Физико-химические свойства хрома. Хром в природе и его промышленное извлечение Хром в природе

Хром

Элемент №24. Один из самых твердых металлов. Обладает высокой химической стойкостью. Один из важнейших металлов, используемых в производстве легированных сталей. Большинство соединений хрома имеет яркую окраску, причем самых разных цветов. За эту особенность элемент и был назван хромом, что в переводе с греческого означает «краска».

Как его нашли

Минерал, содержащий хром, был открыт близ Екатеринбурга в 1766 г. И.Г. Леманном и назван «сибирским красным свинцом». Сейчас этот минерал называется крокоитом. Известен и его состав – РbCrО 4 . А в свое время «сибирский красный свинец» вызвал немало разногласий среди ученых. Тридцать лет спорили о его составе, пока, наконец, в 1797 г. французский химик Луи Никола Воклен не выделил из него металл, который (тоже, кстати, после некоторых споров) назвали хромом.

Воклен обработал крокоит поташем К 2 CO 3: хромат свинца превратился в хромат калия. Затем с помощью соляной кислоты хромат калия был превращен в окись хрома и воду (хромовая кислота существует только в разбавленных растворах). Нагрев зеленый порошок окиси хрома в графитовом тигле с углем, Воклен получил новый тугоплавкий металл.

Парижская академия наук по всей форме засвидетельствовала открытие. Но, скорее всего, Воклен выделил не элементарный хром, а его карбиды. Об этом свидетельствует иглообразная форма полученных Вокленом светлосерых кристаллов.

Название «хром» предложили друзья Воклена, но оно ему не понравилось – металл не отличался особым цветом. Однако друзьям удалось уговорить химика, ссылаясь на то, что из ярко окрашенных соединений хрома можно получать хорошие краски. (Кстати, именно в работах Воклена впервые объяснена изумрудная окраска некоторых природных силикатов бериллия и алюминия; их, как выяснил Воклен, окрашивали примеси соединений хрома.) Так и утвердилось за новым элементом это название.

Между прочим, слог «хром», именно в смысле «окрашенный», входит во многие научные, технические и даже музыкальные термины. Широко известны фотопленки «изопанхром», «панхром» и «ортохром». Слово «хромосома» в переводе с греческого означает «тело, которое окрашивается». Есть «хроматическая» гамма (в музыке) и есть гармоника «хромка».

Где он находится

В земной коре хрома довольно много – 0,02%. Основной минерал, из которого промышленность получает хром, – это хромовая шпинель переменного состава с общей формулой (Mg, Fe) О · (Сr, Al, Fе) 2 O 3 . Хромовая руда носит название хромитов или хромистого железняка (потому, что почти всегда содержит и железо). Залежи хромовых руд есть во многих местах. Наша страна обладает огромными запасами хромитов. Одно из самых больших месторождений находится в Казахстане, в районе Актюбинска; оно открыто в 1936 г. Значительные запасы хромовых руд есть и на Урале.

Хромиты идут большей частью на выплавку феррохрома. Это – один из самых важных ферросплавов, абсолютно необходимый для массового производства легированных сталей.

Ферросплавы – сплавы железа с другими элементами, применяемыми главным обрядом для легирования и раскисления стали. Феррохром содержит не менее 60% Cr.

Царская Россия почти не производила ферросплавов. На нескольких доменных печах южных заводов выплавляли низкопроцентные (по легирующему металлу) ферросилиций и ферромарганец. Да еще на реке Сатке, что течет на Южном Урале, в 1910 г. был построен крошечный заводик, выплавлявший мизерные количества ферромарганца и феррохрома.

Молодой Советской стране в первые годы развития приходилось ввозить ферросплавы из-за рубежа. Такая зависимость от капиталистических стран была недопустимой. Уже в 1927...1928 гг. началось сооружение советских ферросплавных заводов. В конце 1930 г. была построена первая крупная ферросплавная печь в Челябинске, а в 1931 г. вступил в строй Челябинский завод – первенец ферросплавной промышленности СССР. В 1933 г. были пущены еще два завода – в Запорожье и Зестафони. Это позволило прекратить ввоз ферросплавов. Всего за несколько лет в Советском Союзе было организовано производство множества видов специальных сталей – шарикоподшипниковой, жароупорной, нержавеющей, автотракторной, быстрорежущей... Во все эти стали входит хром.

На XVII съезде партии нарком тяжелой промышленности Серго Орджоникидзе говорил: «...если бы у нас не было качественных сталей, у нас не было бы автотракторной промышленности. Стоимость расходуемых нами сейчас качественных сталей определяется свыше 400 млн руб. Если бы надо было ввозить, это – 400 млн руб. ежегодно, вы бы, черт побери, в кабалу попали к капиталистам...»

Завод на базе Актюбинского месторождения построен позже, в годы Великой Отечественной войны. Первую плавку феррохрома он дал 20 января 1943 г. В сооружении завода принимали участие трудящиеся города Актюбинска. Стройка была объявлена народной. Феррохром нового завода шел на изготовление металла для танков и пушек, для нужд фронта.

Прошли годы. Сейчас Актюбинский ферросплавный завод – крупнейшее предприятие, выпускающее феррохром всех марок. На заводе выросли высококвалифицированные национальные кадры металлургов. Из года в год завод и хромитовые рудники наращивают мощность, обеспечивая нашу черную металлургию высококачественным феррохромом.

В нашей стране есть уникальное месторождение природнолегированных железных руд, богатых хромом и никелем. Оно находится в оренбургских степях. На базе этого месторождения построен и работает Орско-Халиловский металлургический комбинат. В доменных печах комбината выплавляют природнолегированный чугун, обладающий высокой жароупорностью. Частично его используют в виде литья, но большую часть отправляют на передел в никелевую сталь; хром при выплавке стали из чугуна выгорает.

Большими запасами хромитов располагают Куба, Югославия, многие страны Азии и Африки.

Как его получают

Хромит применяется преимущественно в трех отраслях промышленности: металлургии, химии и производстве огнеупоров, причем металлургия потребляет примерно две трети всего хромита.

Сталь, легированная хромом, обладает повышенной прочностью, стойкостью против коррозии в агрессивных и окислительных средах.

Получение чистого хрома – дорогой и трудоемкий процесс. Поэтому для легирования стали применяют главным образом феррохром, который получают в дуговых электропечах непосредственно из хромита. Восстановителем служит кокс. Содержание окиси хрома в хромите должно быть не ниже 48%, а отношениеCr: Fe не менее 3: 1.

Полученный в электропечи феррохром обычно содержит до 80% хрома и 4...7% углерода (остальное – железо).

Но для легирования многих качественных сталей нужен феррохром, содержащий мало углерода (о причинах этого – ниже, в главе «Хром в сплавах»). Поэтому часть высокоуглеродистого феррохрома подвергают специальной обработке, чтобы снизить содержание углерода в нем до десятых и сотых долей процента.

Из хромита получают и элементарный, металлический хром. Производство технически чистого хрома (97...99%) основано на методе алюминотермии, открытом еще в 1865 г. известным русским химиком Н.Н. Бекетовым. Сущность метода – в восстановлении окислов алюминием, реакция сопровождается значительным выделением тепла.

Но предварительно надо получить чистую окись хрома Сr 2 О 3 . Для этого тонко измельченный хромит смешивают с содой и добавляют к этой смеси известняк или окись железа. Вся масса обжигается, причем образуется хромат натрия:

2Сr 2 О 3 + 4Na 2 CO 3 + 3О 2 → 4Na 2 CrO 4 + 4CO 2 .

Затем хромат натрия выщелачивают из обожженной массы водой; щелок фильтруют, упаривают и обрабатывают кислотой. В результате получается бихромат натрия Na 2 Cr 2 O 7 . Восстанавливая его серой или углеродом при нагревании, получают зеленую окись хрома.

Металлический хром можно получить, если чистую окись хрома смешать с порошком алюминия, нагреть эту смесь в тигле до 500...600°C и поджечь с помощью перекиси бария, Алюминий отнимает у окиси хрома кислород. Эта реакция Сr 2 О 3 + 2Аl → Аl 2 O 3 + 2Сr – основа промышленного (алюминотермического) способа получения хрома, хотя, конечно, заводская технология значительно сложнее. Хром, полученный алюминотермически, содержит алюминия и железа десятые доли процента, а кремния, углерода и серы – сотые доли процента.

Используют также силикотермический способ получения технически чистого хрома. В этом случае хром из окиси восстанавливается кремнием по реакции

2Сr 2 О 3 + 3Si → 3SiO 2 + 4Сr.

Эта реакция происходит в дуговых печах. Для связывания кремнезема в шихту добавляют известняк. Чистота силикотермического хрома примерно такая же, как и алюминотермического, хотя, разумеется, содержание в нем кремния несколько выше, а алюминия несколько ниже. Для получения хрома пытались применить и другие восстановители – углерод, водород, магний. Однако эти способы не получили широкого распространения.

Хром высокой степени чистоты (примерно 99,8%) получают электролитически.

Технически чистый и электролитический хром идет главным образом на производство сложных хромовых сплавов.

Константы и свойства хрома

Атомная масса хрома 51,996. В менделеевской таблице он занимает место в шестой группе. Его ближайшие соседи и аналоги – молибден и вольфрам. Характерно, что соседи хрома, так же как и он сам, широко применяются для легирования сталей.

Температура плавления хрома зависит от его чистоты. Многие исследователи пытались ее определить и получили значения от 1513 до 1920°C. Такой большой «разброс» объясняется прежде всего количеством и составом содержащихся в хроме примесей. Сейчас считают, что хром плавится при температуре около 1875°C. Температура кипения 2199°C. Плотность хрома меньше, чем железа; она равна 7,19.

По химическим свойствам хром близок к молибдену и вольфраму. Высший окисел его CrО 3 – кислотный, это – ангидрид хромовой кислоты Н 2 CrО 4 . Минерал крокоит, с которого мы начинали знакомство с элементом №24, – соль этой кислоты. Кроме хромовой, известна двухромовая кислота H 2 Cr 2 O 7 , в химии широко применяются ее соли – бихроматы. Наиболее распространенный окисел хрома Cr 2 О 3 – амфотерен. А вообще в разных условиях хром может проявлять валентности от 2 до 6. Широко используются только соединения трех- и шестивалентного хрома.

Хром

ХРОМ -а; м. [от греч. chrōma - цвет, краска]

1. Химический элемент (Сr), твёрдый металл серо-стального цвета (используется при изготовлении твёрдых сплавов и для покрытия металлических изделий).

2. Мягкая тонкая кожа, выдубленная солями этого металла. Сапоги из хрома.

3. Род жёлтой краски, получаемой из хроматов.

Хро́мовый (см.).

хром

(лат. Chromium), химический элемент VI группы периодической системы. Назван от греч. chrōma - цвет, краска (из-за яркой окраски соединений). Голубовато-серебристый металл; плотность 7,19 г/см 3 , t пл 1890°C. На воздухе не окисляется. Главные минералы - хромшпинелиды. Хром - обязательный компонент нержавеющих, кислотоупорных, жаростойких сталей и большого числа других сплавов (нихромы, хромали, стеллит). Применяется для хромирования. Соединения хрома - окислители, неорганические пигменты, дубители.

ХРОМ

ХРОМ (лат. chromium, от греческого хрома - цвет, окраска, для соединений хрома характерна широкая цветовая палитра), Cr (читается «хром»), химический элемент с атомным номером 24, атомная масса 51,9961. Расположен в группе VIB в 4 периоде периодической системы элементов.
Природный хром состоит из смеси четырех стабильных нуклидов: 50 Cr (содержание в смеси 4,35%), 52 Cr (83,79%), 53 Cr (9,50%) и 54 Cr (2,36%). Конфигурация двух внешних электронных слоев 3s 2 р 6 d 5 4s 1 . Степени окисления от 0 до +6 , наиболее характерны +3 (самая устойчивая) и +6 (валентности III и VI).
Радиус нейтрального атома 0,127 нм, радиус ионов (координационное число 6): Cr 2+ 0,073 нм, Cr 3+ 0,0615 нм, Cr 4+ 0,055 нм, Cr 5+ 0,049 нм и Cr 6+ 0,044 нм. Энергии последовательной ионизации 6,766, 16,49, 30,96, 49,1, 69,3 и 90,6 эВ. Сродство к электрону 1,6 эВ. Электроотрицательность по Полингу (см. ПОЛИНГ Лайнус) 1,66.
История открытия
В 1766 в окрестностях Екатеринбурга был обнаружен минерал, который получил название «сибирский красный свинец», PbCrO 4 . Современное название - крокоит. В 1797 французский химик Л. Н. Воклен (см. ВОКЛЕН Луи Никола) выделил из него новый тугоплавкий металл (скорее всего Воклен получил карбид хрома).
Нахождение в природе
Содержание в земной коре 0,035 % по массе. В морской воде содержание хрома 2·10 -5 мг/л. В свободном виде хром практически не встречается. Входит в состав более 40 различных минералов (хромит FeCr 2 O 4 , волконскоит, уваровит, вокеленит и др.). Некоторые метеориты содержат сульфидные соединения хрома.
Получение
Промышленным сырьем при производстве хрома и сплавов на его основе служит хромит. Восстановительной плвкой хромита с коксом (восстановителем), железной рудой и другими компонентами получают феррохром с содержанием хрома до 80% (по массе).
Для получения чистого металлического хрома хромит с содой и известняком обжигают в печах:
2Cr 2 O 3 + 2Na 2 CO 3 + 3O 2 = 4Na 2 CrO 4 + 4CO 2
Образующийся хромат натрия Na 2 CrO 4 выщелачивают водой, раствор фильтруют, упаривают и обрабатывают кислотой. При этом хромат Na 2 CrO 4 переходит в дихромат Na 2 Cr 2 O 7:
2Na 2 CrO 4 + H 2 SO 4 = Na 2 Cr 2 O 7 + Na 2 SO 4 + H 2 O
Полученный дихромат восстанавливают серой:
Na 2 Cr 2 O 7 + 3S = Na 2 S + Cr 2 O 3 + 2SO 2
,
Образующийся чистый оксид хрома(III) Cr 2 O 3 подвергают алюминотермии:
Cr 2 O 3 + 2Al = Al 2 O 3 + 2Cr.
Также используют кремний:
2Cr 2 O 3 + 3Si = 3SiO 2 + 4Cr
Для получения хрома высокой чистоты, технический хром электрохимически очищают от примесей.
Физические и химические свойства
В свободном виде - голубовато-белый металл с кубической объемно-центрированной решеткой, а = 0,28845 нм. При температуре 39°C переходит из парамагнитного состояния в антиферромагнитное (точка Нееля). Температура плавления 1890°C, температура кипения 2680°C. Плотность 7,19 кг/дм 3 .
Устойчив на воздухе. При 300°C сгорает с образованием зеленого оксида хрома (III) Cr 2 O 3 , обладающего амфотерными свойствами. Сплавляя Cr 2 O 3 со щелочами получают хромиты:
Cr 2 O 3 + 2NaOH = 2NaCrO 2 + H 2 O
Непрокаленный оксид хрома (III) легко растворяется в щелочных растворах и в кислотах:
Cr 2 O 3 + 6НСl = 2CrСl 3 + 3Н 2 О
При термическом разложении карбонила хрома Cr(OH) 6 получают красный основной оксид хрома(II) CrO. Коричневый или желтый гидроксид Cr(OН) 2 со слабоосновными свойствами осаждается при добавлении щелочей к растворам солей хрома(II).
При осторожном разложении оксида хрома(VI) CrO 3 в гидротермальных условиях получают диоксид хрома(IV) CrO 2 , который является ферромагнетиком и обладает металлической проводимостью.
При взаимодействии концентрированной серной кислоты с растворами дихроматов образуются красные или фиолетово-красные кристаллы оксида хрома(VI) CrO 3 . Типично кислотный оксид, при взаимодействии с водой он образует сильные неустойчивые хромовые кислоты: хромовая H 2 CrO 4 , дихромовая H 2 Cr 2 O 7 и другие.
Известны галогениды, соответствующие разным степеням окисления хрома. Синтезированы дигалогениды хрома CrF 2 , CrCl 2 , CrBr 2 и СrI 2 и тригалогениды CrF 3 , CrCl 3 , CrBr 3 и СrI 3 . Однако, в отличие от аналогичных соединений алюминия и железа, трихлорид CrCl 3 и трибромид CrBr 3 хрома нелетучи.
Среди тетрагалогенидов хрома устойчив CrF 4 , тетрахлорид хрома CrCl 4 существует только в парах. Известен гексафторид хрома CrF 6 .
Получены и охарактеризованы оксигалогениды хрома CrO 2 F 2 и CrO 2 Cl 2 .
Синтезированы соединения хрома с бором (бориды Cr 2 B, CrB, Cr 3 B 4 , CrB 2 , CrB 4 и Cr 5 B 3), с углеродом (карбиды Cr 23 C 6 , Cr 7 C 3 и Cr 3 C 2), c кремнием (силициды Cr 3 Si, Cr 5 Si 3 и CrSi) и азотом (нитриды CrN и Cr 2 N).
В растворах наиболее устойчивы соединения хрома(III). В этой степени окисления хрому соответствуют как катионная форма, так и анионные формы, например, существующий в щелочной среде анион 3- .
При окислении соединений хрома(III) в щелочной среде образуются соединения хрома(VI):
2Na 3 + 3H 2 O 2 = 2Na 2 CrO 4 + 2NaOH + 8H 2 O
Cr (VI) отвечает ряд существующих только в водных растворах кислот: хромовая H 2 CrO 4 , дихромовая H 2 Cr 2 O 7 , трихромовая H 3 Cr 3 O 10 и другие, которые образуют соли - хроматы, дихроматы, трихроматы и т. д.
В зависимости от кислотности среды анионы этих кислот легко превращаются друг в друга. Например, при подкислении желтого раствора хромата калия K 2 CrO 4 образуется оранжевый дихромат калия K 2 Cr 2 O 7:
2K 2 CrO 4 + 2НСl = K 2 Cr 2 O 7 + 2КСl + Н 2 О
Но если к оранжевому раствору K 2 Cr 2 O 7 прилить раствор щелочи, как окраска вновь переходит в желтую т. к. снова образуется хромат калия K 2 CrO 4:
K 2 Cr 2 O 7 + 2КОН = 2K 2 CrO 4 + Н 2 О
При добавлении к желтому раствору, содержащему хромат-ионы, раствора соли бария выпадает желтый осадок хромата бария BаCrO 4:
Bа 2+ + CrO 4 2- = BаCrO 4
Соединения хрома(III)- сильные окислители, например:
K 2 Cr 2 O 7 + 14 НСl = 2CrCl 3 + 2KCl + 3Cl 2 + 7H 2 O
Применение
Использование хрома основано на его жаропрочности, твердости и устойчивости к коррозии. Применяют для получения сплавов: нержавеющей стали, нихрома и др. Большое количество хрома идет на декоративные коррозионно-стойкие покрытия. Соединения хрома - огнеупорные материалы. Оксид хрома (III) - пигмент зеленой краски, также входит в состав абразивных материалов (паст ГОИ). Изменение окраски при восстановлении соединений хрома(VI) применяют для проведения экспресс-анализа на содержание алкоголя в выдыхаемом воздухе.
Катион Cr 3+ входит в состав хромкалиевых KCr(SO 4) 2 ·12H 2 O квасцов, использующихся при выделке кожи.
Физиологическое действие
Хром - один из биогенных элементов, постоянно входит в состав тканей растений и животных. У животных хром участвует в обмене липидов, белков (входит в состав фермента трипсина), углеводов. Снижение содержания хромма в пище и крови приводит к уменьшению скорости роста, увеличению холестерина в крови.
Металлический хром практически нетоксичен, но металлическая пыль хрома раздражает ткани легких. Соединения хрома(III) вызывают дерматиты. Соединения хрома(VI) приводят к разным заболеваниям человека, в том числе и онкологическим. ПДК хрома(VI) в атмосферном воздухе 0,0015 мг/м 3 .

Энциклопедический словарь . 2009 .

Синонимы :

Смотреть что такое "хром" в других словарях:

    хром - хром, а … Русский орфографический словарь

    хром - хром/ … Морфемно-орфографический словарь

    - (от греч. chroma цвет, краска). Металл сероватого цвета, добываемый из хромовой руды. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ХРОМ металл сероватого цвета; в чистом виде х. не употребляется; соединения же с … Словарь иностранных слов русского языка

    ХРОМ - см. ХРОМ (Сг). Соединения хрома встречаются в сточных водах многих промышленных предприятий, производящих хромовые соли, ацетилен, дубильные вещества, анилин, линолеум, бумагу, краски, пестициды, пластмассы и др. В воде встречаются трехвалентные… … Болезни рыб: Справочник

    ХРОМ, а, муж. 1. Химический элемент, твёрдый светло серый блестящий металл. 2. Род жёлтой краски (спец.). | прил. хромистый, ая, ое (к 1 знач.) и хромовый, ая, ое. Хромистая сталь. Хромовая руда. II. ХРОМ, а, муж. Сорт мягкой тонкой кожи. | прил … Толковый словарь Ожегова

    хром - а, м. chrome m. <новолат. chromium <лат. chroma <гр. краска. 1. Химический элемент твердый серебристый металл, употребляемый при изготовлении твердых сплаво и для покрытия металлических изделий. БАС 1. Металл, открытый Вокеленом,… … Исторический словарь галлицизмов русского языка

    ХРОМ - ХРОМ, Chromium (от греч. chroma краска), I симв. Сг, хим. элемент с ат. весом 52,01 (изо! топы 50, 52, 53, 54); порядковое число 24, за! нимает место в четной подгруппе VІ группы j таблицы Менделеева. Соединения X. часто i встречаются в природе … Большая медицинская энциклопедия

    - (лат. Chromium) Cr, химический элемент VI группы Периодической системы Менделеева, атомный номер 24, атомная масса 51,9961. Название от греч. chroma цвет, краска (из за яркой окраски Соединения). Голубовато серебристый металл; плотность 7,19… … Большой Энциклопедический словарь

    ХРОМ 1, а, м. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

    ХРОМ 2, а, м. Сорт мягкой тонкой кожи. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

Хром (лат. Cromium), Cr, химический элемент VI группы периодической системы Менделеева, атомный номер 24, атомная масса 51,996; металл голубовато-стального цвета.

Природные стабильные изотопы: 50 Cr (4,31%), 52 Cr (87,76%), 53 Cr (9,55%) и 54 Cr (2,38%). Из искусственных радиоактивных изотопов наиболее важен 51 Cr (период полураспада T ½ = 27,8 суток), который применяется как изотопный индикатор.

Историческая справка. Хром открыт в 1797 году Л. Н. Вокленом в минерале крокоите - природном хромате свинца РbCrО 4 . Название Хром получил от греческого слова chroma - цвет, краска (из-за разнообразия окраски своих соединений). Независимо от Воклена Хром был открыт в крокоите в 1798 году немецким ученым М. Г. Клапротом.

Распространение Хрома в природе. Среднее содержание Хрома в земной коре (кларк) 8,3·10 -3 % . Этот элемент, вероятно, более характерен для мантии Земли, так как ультраосновные породы, которые, как полагают, ближе всего по составу к мантии Земли, обогащены Хромом (2·10 -4 %). Хром образует массивные и вкрапленные руды в ультраосновных горных породах; с ними связано образование крупнейших месторождений Хрома. В основных породах содержание Хрома достигает лишь 2·10 -2 %, в кислых - 2,5·10 -3 %, в осадочных породах (песчаниках) - 3,5·10 -3 %, глинистых сланцах - 9·10 -3 % . Хром - сравнительно слабый водный мигрант; содержание Хрома в морской воде 0,00005 мг/л.

В целом Хром - металл глубинных зон Земли; каменные метеориты (аналоги мантии) тоже обогащены Хромом (2,7·10 -1 %). Известно свыше 20 минералов Хрома. Промышленное значение имеют только хромшпинелиды (до 54% Сr); кроме того, Хром содержится в ряде других минералов, которые нередко сопровождают хромовые руды, но сами не представляют практическое ценности (уваровит, волконскоит, кемерит, фуксит).

Физические свойства Хрома. Хром - твердый, тяжелый, тугоплавкий металл. Чистый Хром пластичен. Кристаллизуется в объемноцентрированной решетке, а = 2,885Å (20 °С); при 1830 °С возможно превращение в модификацию с гранецентрированной решеткой, а = 3,69Å.

Атомный радиус 1,27 Å; ионные радиусы Cr 2+ 0,83Å, Cr 3+ 0,64Å, Cr 6+ 0,52 Å. Плотность 7,19 г/см 3 ; t пл 1890 °С; t кип 2480 °С. Удельная теплоемкость 0,461 кдж/(кг·К) (25°С); термический коэффициент линейного расширения 8,24·10 -6 (при 20 °С); коэффициент теплопроводности 67 вт/(м·К) (20 °С); удельное электросопротивление 0,414 мком·м(20 °С); термический коэффициент электросопротивления в интервале 20-600 °С составляет 3,01·10 -3 . Хром антиферромагнитен, удельная магнитная восприимчивость 3,6·10 -6 . Твердость высокочистого Хрома по Бринеллю 7-9 Мн/м 2 (70-90 кгс/см 2).

Химические свойства Хрома. Внешняя электронная конфигурация атома Хрома 3d 5 4s 1 . В соединениях обычно проявляет степени окисления +2, +3, +6, среди них наиболее устойчивы Сr 3+ ; известны отдельные соединения, в которых Хром имеет степени окисления +1, +4, +5. Хром химически малоактивен. При обычных условиях устойчив к кислороду и влаге, но соединяется с фтором, образуя CrF 3 . Выше 600 °С взаимодействует с парами воды, давая Сr 2 О 3 ; азотом - Cr 2 N, CrN; углеродом - Сr 23 С 6 , Сr 7 С 3 , Сr 3 С 2 ; серой - Cr 2 S 3 . При сплавлении с бором образует борид СrВ, с кремнием - силициды Cr 3 Si, Cr 2 Si 3 , CrSi 2 . Со многими металлами Хром дает сплавы. Взаимодействие с кислородом протекает сначала довольно активно, затем резко замедляется благодаря образованию на поверхности металла оксидной пленки. При 1200 °С пленка разрушается и окисление снова идет быстро. Хром загорается в кислороде при 2000 °С с образованием темно-зеленого оксида Хрома (III) Сr 2 О 3 . Помимо оксида (III), известны других соединения с кислородом, например CrO, СrО 3 , получаемые косвенным путем. Хром легко реагирует с разбавленными растворами соляной и серной кислот с образованием хлорида и сульфата Хрома и выделением водорода; царская водка и азотная кислота пассивируют Хром.

С увеличением степени окисления возрастают кислотные и окислительные свойства Хром Производные Сr 2+ - очень сильные восстановители. Ион Сr 2+ образуется на первой стадии растворения Хрома в кислотах или при восстановлении Сr 3+ в кислом растворе цинком. Гидрат закиси Сr(ОН) 2 при обезвоживании переходит в Сr 2 О 3 . Соединения Сr 3+ устойчивы на воздухе. Могут быть и восстановителями и окислителями. Сr 3+ можно восстановить в кислом растворе цинком до Сr 2+ или окислить в щелочном растворе до СrО 4 2- бромом и других окислителями. Гидрооксид Сr(ОН) 3 (вернее Сr 2 О 3 ·nН 2 О) - амфотерное соединение, образующее соли с катионом Сr 3+ или соли хромистой кислоты НСrО 2 - хромиты (например, КСrО 2 , NaCrO 2). Соединения Сr 6+ : хромовый ангидрид СrО 3 , хромовые кислоты и их соли, среди которых наиболее важны хроматы и дихроматы - сильные окислители. Хром образует большое число солей с кислородсодержащими кислотами. Известны комплексные соединения Хрома; особенно многочисленны комплексные соединения Сr 3+ , в которых Хром имеет координационное число 6. Существует значительное число переоксидных соединений Хрома

Получение Хрома. В зависимости от цели использования получают Хром различной степени чистоты. Сырьем обычно служат хромшпинелиды, которые подвергают обогащению, а затем сплавляют с поташом (или содой) в присутствии кислорода воздуха. Применительно к основному компоненту руд, содержащему Сr 3 +, реакция следующая:

2FeCr 2 О 4 + 4K 2 CO 3 + 3,5О 2 = 4К 2 СrО 4 + Fе 2 О 3 + 4СО 2 .

Образующийся хромат калия К 2 СrО 4 выщелачивают горячей водой и действием H 2 SO 4 превращают его в дихромат К 2 Сr 2 О 7 . Далее действием концентрированного раствора H 2 SО 4 на К 2 Сr 2 О 7 получают хромовый ангидрид С 2 О 3 или нагреванием К 2 Сr 2 О 7 с серой - оксид Хрома (III) С 2 О 3 .

Наиболее чистый Хром в промышленного условиях получают либо электролизом концентрированных водных растворов СrО 3 или Сr 2 О 3 , содержащих H 2 SO 4 , либо электролизом сульфата Хрома Cr 2 (SO 4) 3 . При этом Хром выделяется на катоде из алюминия или нержавеющей стали. Полная очистка от примесей достигается обработкой Хрома особо чистым водородом при высокой температуре (1500-1700 °С).

Возможно также получение чистого Хрома электролизом расплавов CrF 3 или СrCl 3 в смеси с фторидами натрия, калия, кальция при температуре около 900 °С в атмосфере аргона.

В небольших количествах Хром получают восстановлением Сr 2 О 3 алюминием или кремнием. При алюминотермическом способе предварительно подогретую шихту из Сr 2 О 3 и порошка или стружек Аl с добавками окислителя загружают в тигель, где реакцию возбуждают поджиганием смеси Na 2 O 2 и Аl до тех пор, пока тигель заполнится Хромом и шлаком. Силикотермически Хром выплавляют в дуговых печах. Чистота получаемого Хрома определяется содержанием примесей в Сr 2 О 3 и в Аl или Si, используемых для восстановления.

В промышленности в больших масштабах производятся сплавы Хрома - феррохром и силикохром.

Применение Хрома. Использование Хрома основано на его жаропрочности, твердости и устойчивости против коррозии. Больше всего Хрома применяют для выплавки хромистых сталей. Алюмино- и силикотермический Хром используют для выплавки нихрома, нимоника, других никелевых сплавов и стеллита.

Значительное количество Хрома идет на декоративные коррозионно-стойкие покрытия. Широкое применение получил порошковый Хром в производстве металлокерамических изделий и материалов для сварочных электродов. Хром в виде иона Cr 3+ - примесь в рубине, который используется как драгоценный камень и лазерный материал. Соединениями Хрома протравливают ткани при крашении. Некоторые соли Хрома используются как составная часть дубильных растворов в кожевенной промышленности; PbCrO 4 , ZnCrO 4 , SrCrO 4 - как художественные краски. Из смеси хромита и магнезита изготовляют хромомагнезитовые огнеупорные изделия.

Соединения Хром (особенно производные Cr 6 +) токсичны.

Хром в организме. Хром - один из биогенных элементов, постоянно входит в состав тканей растений и животных. Среднее содержание Хрома в растениях - 0,0005% (92-95% Хрома накапливается в корнях), у животных - от десятитысячных до десятимиллионных долей процента. В планктонных организмах коэффициент накопления Хрома огромен - 10 000-26 000. Высшие растения не переносят концентрации Хрома выше 3-10 -4 моль/л. В листьях он присутствует в виде низкомолекулярного комплекса, не связанного с субклеточными структурами. У животных Хром участвует в обмене липидов, белков (входит в состав фермента трипсина), углеводов (структурный компонент глюкозоустойчивого фактора). Основной источник поступления Хрома в организм животных и человека - пища. Снижение содержания Хрома в пище и крови приводит к уменьшению скорости роста, увеличению холестерина в крови и снижению чувствительности периферийных тканей к инсулину.

Отравления Хромом, и его соединениями встречаются при их производстве; в машиностроении (гальванические покрытия); металлургии (легирующие добавки, сплавы, огнеупоры); при изготовлении кож, красок и т. д. Токсичность соединений Хрома зависит от их химические структуры: дихроматы токсичнее хроматов, соединения Cr (VI) токсичнее соединений Cr(II), Cr(III). Начальные формы заболевания проявляются ощущением сухости и болью в носу, першением в горле, затруднением дыхания, кашлем и т. д.; они могут проходить при прекращении контакта с Хромом. При длительном контакте с соединениями Хрома развиваются признаки хронические отравления: головная боль, слабость, диспепсия, потеря в весе и других. Нарушаются функции желудка, печени и поджелудочной железы. Возможны бронхит, бронхиальная астма, диффузный пневмосклероз. При воздействии Хрома на кожу могут развиться дерматит, экзема. По некоторым данным, соединения Хрома, преимущественно Cr(III), обладают канцерогенным действием.

Открытие хрома относится к периоду бурного развития химико-аналитических исследований солей и минералов. В России химики проявляли особый интерес к анализу минералов, найденных в Сибири и почти неизвестных в Западной Европе. Одним из таких минералов была сибирская красная свинцовая руда (крокоит), описанная еще Ломоносовым. Минерал исследовался, но ничего, кроме окислов свинца, железа и алюминия в нем не было найдено. Однако в 1797 году Вокелен, прокипятив тонко измельченный образец минерала с поташом и осадив карбонат свинца, получил раствор, окрашенный в оранжево – красный цвет. Из этого раствора он выкристаллизовал рубиново-красную соль, из которой выделили окисел и свободный металл, отличный от всех известных металлов. Вокелен назвал его Хром (Chrome ) от греческого слова - окраска, цвет; правда здесь имелось в виду свойство не металла, а его ярко окрашенных солей .

Нахождение в природе.

Важнейшей рудой хрома, имеющей практическое значение, является хромит, приблизительный состав которого отвечает формуле FeCrO 4.

Он встречается в Малой Азии, на Урале, в Северной Америке, на юге Африки. Техническое значение имеет также вышеназванный минерал крокоит – PbCrO 4 . В природе встречаются также оксид хрома (3) и некоторые другие его соединения. В земной коре содержание хрома в пересчете на металл составляет 0,03%. Хром обнаружен на Солнце, звездах, метеоритах.

Физические свойства .

Хром – белый, твердый и хрупкий металл, исключительно химически стойкий к воздействию кислот и щелочей. На воздухе он окисляется, имеет на поверхности тонкую прозрачную пленку оксида. Хром имеет плотность 7,1 г/см 3 , его температура плавления составляет +1875 0 С.

Получение.

При сильном нагреве хромистого железняка с углем происходит восстановление хрома и железа:

FeO * Cr 2 O 3 + 4C = 2Cr + Fe + 4CO

В результате этой реакции образуется сплав хрома с железом, отличающийся высокой прочностью. Для получения чистого хрома, его восстанавливают из оксида хрома(3) алюминием:

Cr 2 O 3 + 2Al = Al 2 O 3 + 2Cr

В данном процессе обычно используют два оксида – Cr 2 O 3 и CrO 3

Химические свойства.

Благодаря тонкой защитной пленке оксида, покрывающей поверхность хрома, он весьма устойчив к воздействию агрессивных кислот и щелочей. Хром не реагирует с концентрированными азотной и серной кислотами, а также с фосфорной кислотой. Со щелочами хром вступает во взаимодействие при t = 600-700 о C. Однако хром взаимодействует с разбавленными серной и соляной кислотами, вытесняя водород:

2Cr + 3H 2 SO 4 = Cr 2 (SO 4) 3 + 3H 2
2Cr + 6HCl = 2CrCl 3 + 3H 2

При высокой температуре хром горит в кислороде, образуя оксид(III).

Раскаленный хром реагирует с парами воды:

2Cr + 3H 2 O = Cr 2 O 3 + 3H 2

Хром при высокой температуре реагирует также с галогенами, галоген - водородами, серой, азотом, фосфором, углем, кремнием, бором, например:

Cr + 2HF = CrF 2 + H 2
2Cr + N2 = 2CrN
2Cr + 3S = Cr 2 S 3
Cr + Si = CrSi

Вышеуказанные физические и химические свойства хрома нашли свое применение в различных областях науки и техники. Так, например, хром и его сплавы используются для получения высокопрочных, коррозионно-стойких покрытий в машиностроении. Сплавы в виде феррохрома используются в качестве металлорежущих инструментов. Хромированные сплавы нашли применение в медицинской технике, при изготовлении химического технологического оборудования.

Положение хрома в периодической системе химических элементов:

Хром возглавляет побочную подгруппу VI группы периодической системы элементов. Его электронная формула следующая:

24 Cr IS 2 2S 2 2P 6 3S 2 3P 6 3d 5 4S 1

В заполнении орбиталей электронами у атома хрома нарушается закономерность, согласно которой сначала должна была бы заполнятся 4S – орбиталь до состояния 4S 2 . Однако, вследствие того, что 3d – орбиталь занимает в атоме хрома более выгодное энергетическое положение, происходит ее заполнение до значения 4d 5 . Такое явление наблюдается у атомов некоторых других элементов побочных подгрупп. Хром может проявлять степени окисления от +1 до +6. Наиболее устойчивыми являются cоединения хрома со степенями окисления +2, +3, +6.

Соединения двухвалентного хрома.

Оксид хрома (II) CrO – пирофорный черный порошок (пирофорность – способность в тонкораздробленном состоянии воспламенятся на воздухе). CrO растворяется в разбавленной соляной кислоте:

CrO + 2HCl = CrCl 2 + H 2 O

На воздухе при нагревании свыше 100 0 С CrO превращается в Cr 2 O 3 .

Соли двухвалентного хрома образуются при растворении металлического хрома в кислотах. Эти реакции проходят в атмосфере малоактивного газа (например H 2), т.к. в присутствии воздуха легко происходит окисление Cr(II) до Cr(III).

Гидроксид хрома получают в виде желтого осадка при действии раствора щелочи на хлорид хрома (II):

CrCl 2 + 2NaOH = Cr(OH) 2 + 2NaCl

Cr(OH) 2 обладает основными свойствами, является восстановителем. Гидратированный ион Cr2+ окрашен в бледно – голубой цвет. Водный раствор CrCl 2 имеет синюю окраску. На воздухе в водных растворах соединения Cr(II) переходят в соединения Cr(III). Особенно это ярко выражается у гидроксида Cr(II):

4Cr(OH) 2 + 2H 2 O + O 2 = 4Cr(OH) 3

Соединения трехвалентного хрома.

Оксид хрома (III) Cr 2 O 3 – тугоплавкий порошок зеленого цвета. По твердости близок к корунду. В лаборатории его можно получить нагреванием дихромата аммония:

(NH 4) 2 Cr 2 O 7 = Cr 2 O 3 + N 2 + 4H 2

Cr 2 O 3 – амфотерный оксид, при сплавлении со щелочами образует хромиты: Cr 2 O 3 + 2NaOH = 2NaCrO 2 + H 2 O

Гидроксид хрома также является амфотерным соединением:

Cr(OH) 3 + HCl = CrCl 3 + 3H 2 O
Cr(OH) 3 + NaOH = NaCrO 2 + 2H 2 O

Безводный CrCl 3 имеет вид листочков темно-фиолетового цвета, совершенно нерастворим в холодной воде, при кипячении он растворяется очень медленно. Безводный сульфат хрома (III) Cr 2 (SO 4) 3 розового цвета, также плохо растворим в воде. В присутствии восстановителей образует фиолетовый сульфат хрома Cr 2 (SO 4) 3 *18H 2 O. Известны также зеленые гидраты сульфата хрома, содержащие меньшее количество воды. Хромовые квасцы KCr(SO 4) 2 *12H 2 O выкристаллизовываются из растворов, содержащих фиолетовый сульфат хрома и сульфат калия. Раствор хромовых квасцов при нагревании становится зеленым благодаря образованию сульфатов.

Реакции с хромом и его соединениями

Почти все соединения хрома и их растворы интенсивно окрашены. Имея бесцветный раствор или белый осадок, мы можем с большой долей вероятности сделать вывод об отсутствии хрома.

  1. Сильно нагреем в пламени горелки на фарфоровой чашке такое количество бихромата калия, которое поместится на кончике ножа. Соль не выделит кристаллизационной воды, а расплавится при температуре около 400 0 С с образование темной жидкости. Погреем ее еще несколько минут на сильном пламени. После охлаждения на черепке образуется зеленый осадок. Часть его растворим в воде (она приобретает желтый цвет), а другую часть оставим на черепке. Соль при нагревании разложилась, в результате образовался растворимый желтый хромат калия K 2 CrO 4 и зеленый Cr 2 O 3 .
  2. Растворим 3г порошкообразного бихромата калия в 50мл воды. К одной части добавим немного карбоната калия. Он растворится с выделением CO 2 , а окраска раствора станет светло – желтой. Из бихромата калия образуется хромат. Если теперь по порциям добавить 50% раствор серной кислоты, то снова появится красно – желтая окраска бихромата.
  3. Нальем в пробирку 5мл. раствора бихромата калия, прокипятим с 3мл концентрированной соляной кислоты под тягой. Из раствора выделяется желто-зеленый ядовитый газообразный хлор, потому, что хромат окислит HCl до Cl 2 и H 2 O. Сам хромат превратится в зеленый хлорид трехвалентного хрома. Его можно выделить выпариванием раствора, а потом, сплавив с содой и селитрой, перевести в хромат.
  4. При добавлении раствора нитрата свинца выпадает желтый хромат свинца; при взаимодействии с раствором нитрата серебра образуется красно – коричневый осадок хромата серебра.
  5. Добавим пероксид водорода к раствору бихромата калия и подкислим раствор серной кислотой. Раствор приобретает глубокий синий цвет благодаря образованию пероксида хрома. Пероксид при взбалтывании с некоторым количеством эфира перейдет в органический растворитель и окрасит его в голубой цвет. Данная реакция специфична для хрома и очень чувствительна. С ее помощью можно обнаружить хром в металлах и сплавах. Прежде всего необходимо растворить металл. При длительном кипячении с 30% - ной серной кислотой (можно добавить и соляную кислоту) хром и многие стали частично растворяются. Полученный раствор содержит сульфат хрома (III). Чтобы можно было провести реакцию обнаружения, сначала нейтрализуем его едким натром. В осадок выпадает серо-зеленый гидроксид хрома (III), который растворится в избытке NaOH и образует зеленый хромит натрия. Профильтруем раствор и добавим 30% -ый пероксид водорода. При нагревании раствор окрасится в желтый цвет, так как хромит окислится до хромата. Подкисление приведет к появлению голубой окраски раствора. Окрашенное соединение можно экстрагировать, встряхивая с эфиром.

Аналитические реакции на ионы хрома.

  1. К 3-4 каплям раствора хлорида хрома CrCl 3 прибавьте 2М раствор NaOH до растворения первоначально выпавшего осадка. Обратите внимание на цвет образовавшегося хромита натрия. Нагрейте полученный раствор на водяно бане. Что при этом происходит?
  2. К 2-3 каплям р-ра CrCl 3 прибавьте равный объем 8М раствора NaOH и 3-4 капли 3% р-ра H 2 O 2 . Нагрейте реакционную смесь на водяной бане. Что при этом происходит? Какой осадок образуется, если полученный окрашеный раствор нейтрализовать, добавить к нему CH 3 COOH, а затем Pb(NO 3) 2 ?
  3. Налейте в пробирку по 4-5 капель растворов сульфата хрома Cr 2 (SO 4) 3 , IMH 2 SO 4 и KMnO 4 . Нагрейте реакционную смест в течение нескольких минут на водяной бане. Обратите внимание на изменение окраски раствора. Чем оно вызвано?
  4. К 3-4 каплям подкисленного азотной кислотой раствора K 2 Cr 2 O 7 прибавьте 2-3 капли раствора H 2 O 2 и перемешайте. Появляющиеся синее окрашивание раствора обусловлено возникновением надхромовой кислоты H 2 CrO 6:

Cr 2 O 7 2- + 4H 2 O 2 + 2H + = 2H 2 CrO 6 + 3H 2 O

Обратите внимание на на быстрое разложение H 2 CrO 6:

2H 2 CrO 6 + 8H+ = 2Cr 3+ + 3O 2 + 6H 2 O
синий цвет зеленый цвет

Надхромовая кислота значительно более устойчива в органических растворителях.

  1. К 3-4 каплям подкисленного азотной кислотой раствора K 2 Cr 2 O 7 прибавьте 5 капель изоамилового спирта, 2-3 капли раствора H 2 O 2 и взболтайте реакционную смесь. Всплывающий на верх слой органического растворителя окрашен в ярко-синий цвет. Окраска исчезает очень медленно. Сравните устойчивость H 2 CrO 6 в органической и водных фазах.
  2. При взаимодействии CrO 4 2- и ионами Ba 2+ выпадает желтый осадок хромата бария BaCrO 4 .
  3. Нитрат серебра образует с ионами CrO 4 2- осадок хромата серебра кирпично-красного цвета.
  4. Возьмите три пробирки. В одну из них поместите 5- 6 капель раствора K 2 Cr 2 O 7 , во вторую – такой же объем раствора K 2 CrO 4 , а в третью – по три капли обоих растворов. Затем добавте в каждую пробирку по три капли раствора иодида калия. Объясните полученный результат. Подкислите раствор во второй пробирке. Что при этом происходит? Почему?

Занимательные опыты с соединениями хрома

  1. Смесь CuSO 4 и K 2 Cr 2 O 7 при добавлении щелочи становится зеленой, а в присутствии кислоты становится желтой. Нагревая 2мг глицерина с небольшим количеством (NH 4) 2 Cr 2 O 7 с последующим добавлением спирта, после фильтрования получается ярко-зеленый раствор, который при добавлении кислоты становится желтым, а в нейтральной или щелочной среде становится зеленым.
  2. Поместить в центр консервной банки с термитом «рубиновую смесь» - тщательно растертый и помещенный в алюминиевую фольгу Al 2 O 3 (4,75г) с добавкой Cr 2 O 3 (0,25г). Чтобы банка подольше не остывала, необходимо закопать под верхний обрез в песок, а после поджигания термита и начала реакции, накрыть ее железным листом и засыпать песком. Банку выкопать через сутки. В итоге образуется красно – рубиновый порошок.
  3. 10г бихромата калия растирают с 5г нитрата натрия или калия и 10г сахара. Смесь увлажняют и смешивают с коллодием. Если порошок спрессовать в стеклянной трубке, а затем вытолкнуть палочку и поджечь ее с торца, то начнет выползать «змея», сначала черная, а после охлаждения - зеленая. Палочка диаметром 4 мм горит со скоростью около 2мм в секунду и удлиняется в 10 раз.
  4. Если смешать растворы сульфата меди и дихромата калия и добавить немного раствора аммиака, то выпадет аморфный коричневый осадок состава 4СuCrO 4 * 3NH 3 * 5H 2 O, который растворяется в соляной кислоте с образованием желтого раствора, а в избытке аммиака получается зеленый раствор. Если далее к этому раствору добавить спирт, то выпадет зеленый осадок, который после фильтрации становится синим, а после высушивания – сине-фиолетовым с красными блестками, хорошо видимыми при сильном освещении.
  5. Оставшийся после опытов «вулкан» или «фараоновы змеи» оксид хрома можно регенерировать. Для этого надо сплавить 8г Cr 2 O 3 и 2г Na 2 CO 3 и 2,5г KNO 3 и обработать остывший сплав кипятком. Получается растворимый хромат, который можно превратить и в другие соединения Cr(II) и Cr(VI), в том числе и исходный дихромат аммония.

Примеры окислительно – восстановительных переходов с участием хрома и его соединений

1. Cr 2 O 7 2- -- Cr 2 O 3 -- CrO 2 - -- CrO 4 2- -- Cr 2 O 7 2-

a) (NH 4) 2 Cr 2 O 7 = Cr 2 O 3 + N 2 + 4H 2 Oб) Cr 2 O 3 + 2NaOH = 2NaCrO 2 + H 2 O
в) 2NaCrO 2 + 3Br 2 + 8NaOH = 6NaBr +2Na 2 CrO 4 + 4H 2 O
г) 2Na 2 CrO 4 + 2HCl = Na 2 Cr 2 O 7 + 2NaCl + H 2 O

2. Cr(OH) 2 -- Cr(OH) 3 -- CrCl 3 -- Cr 2 O 7 2- -- CrO 4 2-

а) 2Cr(OH) 2 + 1/2O 2 + H 2 O = 2Cr(OH) 3
б) Cr(OH) 3 + 3HCl = CrCl 3 + 3H 2 O
в) 2CrCl 3 + 2KMnO 4 + 3H 2 O = K 2 Cr 2 O 7 + 2Mn(OH) 2 + 6HCl
г) K 2 Cr 2 O 7 + 2KOH = 2K 2 CrO 4 + H 2 O

3. CrO -- Cr(OH) 2 -- Cr(OH) 3 -- Cr(NO 3) 3 -- Cr 2 O 3 -- CrO - 2
Cr 2+

а) CrO + 2HCl = CrCl 2 + H 2 O
б) CrO + H 2 O = Cr(OH) 2
в) Cr(OH) 2 + 1/2O 2 + H 2 O = 2Cr(OH) 3
г) Cr(OH) 3 + 3HNO 3 = Cr(NO 3) 3 + 3H 2 O
д) 4Сr(NO 3) 3 = 2Cr 2 O 3 + 12NO 2 + O 2
е) Cr 2 O 3 + 2 NaOH = 2NaCrO 2 + H 2 O

Элемент хром в роли художника

Химики довольно часто обращались к проблеме создания искусственных пигментов для живописи. В XVIII-XIXвв была разработана технология получения многих живописных материалов. Луи Никола Воклен в 1797г., обнаруживший в сибирской красной руде ранее неизвестный элемент хром, приготовил новую, замечательно устойчивую краску – хромовую зелень. Хромофором ее является водный оксид хрома (III). Под названием « изумрудная зеленая» ее начали выпускать в 1837 году. Позже Л.Вокелен предложил несколько новых красок: баритовую, цинковую и хромовые желтые. Со временем они были вытеснены более стойкими желтыми, оранжевыми пигментами на основе кадмия.

Зеленая хромовая – самая прочная и светостойкая краска, не поддающаяся воздействию атмосферных газов. Растертая на масле хромовая зелень обладает большой кроющей силой и способна к быстрому высыханию, поэтому с XIX в. ее широко применяют в живописи. Огромное значение она имеет в росписи фарфора. Дело в том, что фарфоровые изделия могут декорироваться как подглазурной, так и надглазурной росписью. В первом случае краски наносят на поверхность лишь слегка обожженного изделия, которое затем покрывают слоем глазури. Далее следует основной, высокотемпературный обжиг: для спекания фарфоровой массы и оплавления глазури изделия нагревают до 1350 – 1450 0 С. Столь высокую температуру без химических изменений выдерживают очень немногие краски, а в старину таких вообще было только две – кобальтовая и хромовая. Черный оксид кобальта, нанесенный на поверхность фарфорового изделия, при обжиге сплавляется с глазурью, химически взаимодействуя с ней. В результате образуются ярко-синие силикаты кобальта. Такую декарированную кобальтом синюю фарфоровую посуду все хорошо знают. Оксид хрома (III) не взаимодействует химически с компонентами глазури и просто залегает между фарфоровыми черепками и прозрачной глазурью «глухим» слоем.

Помимо хромовой зелени художники применяют краски, полученные из волконскоита. Этот минерал из группы монтмориллонитов (глинистый минерал подкласса сложных силикатов Na(Mo,Al), Si 4 O 10 (OH) 2 был обнаружен в 1830г. русским минералогом Кеммерером и назван в честь М.Н Волконской – дочери героя битвы при Бородино генерала Н.Н. Раевского, жены декабриста С.Г.Волконского. Волконскоит представляет собой глину, содержащую до 24% оксида хрома, а так же оксиды аллюминея и железа (III). Непостоянство состава минерала, встечающегося на Урале, в Пермской и Кировской областях, обусловливает его разнообразную окраску – от цвета зимней потемневшей пихты до ярко-зеленого цвета болотной лягушки.

Пабло Пикассо обращался к геологам нашей страны с просьбой изучить запасы волконскоита, дающего краску неповторимо свежего тона. В настоящее время разработан способ получения искусственного волконскоита. Интересно отметить, что по данным современных исследований, русские иконописцы использовали краски из этого материала еще в средние века, задолго до его «официального» открытия. Известной популярностью пользовалась у художников и зелень Гинье (создана в 1837г.), хромоформ которой является гидрат окиси хрома Cr 2 O 3 * (2-3) H 2 O, где часть воды химически связана, а часть адсорбирована. Этот пигмент придает краске изумрудный оттенок.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Твёрдый металл голубовато-белого цвета. Хром иногда относят к чёрным металлам. Этот металл способен окрашивать соединения в разные цвета, потому и был назван «хром», что означает «краска». Хром – микроэлемент, необходимый для нормального развития и функционирования человеческого организма. Важнейшая его биологическая роль состоит в регуляции углеводного обмена и уровня глюкозы в крови.

Смотрите так же:

СТРУКТУРА

В зависимости от типов химической связи — как и все металлы хром имеет металлический тип кристаллической решетки, то есть в узлах решетки находятся атому металла.
В зависимости от пространственной симметрии — кубическая, объемно-центрированная а = 0,28839 нм. Особенностью хрома является резкое изменение его физических свойств при температуре около 37°С. Кристаллическая решетка металла состоит из его ионов и подвижных электронов. Аналогично атом хрома в основном состоянии имеет электронную конфигурацию. При 1830 °С возможно превращение в модификацию с гранецентрированной решеткой, а = 3,69Å.

СВОЙСТВА

Хром имеет твердость по шкале Мооса 9, один из самых твердых чистых металлов (уступает только иридию, бериллию, вольфраму и урану). Очень чистый хром достаточно хорошо поддаётся механической обработке. Устойчив на воздухе за счёт пассивирования. По этой же причине не реагирует с серной и азотной кислотами. При 2000 °C сгорает с образованием зелёного оксида хрома(III) Cr 2 O 3 , обладающего амфотерными свойствами. При нагревании реагирует со многими неметаллами, часто образуя соединения нестехиометрического состава карбиды, бориды, силициды, нитриды и др. Хром образует многочисленные соединения в различных степенях окисления, в основном +2, +3, +6. Хром обладает всеми характерными для металлов свойствами — хорошо проводит тепло, электрический ток, имеет присущий большинству металлов блеск. Является антиферромагнетиком и парамагнетиком, то есть, при температуре 39 °C переходит из парамагнитного состояния в антиферромагнитное (точка Нееля).

ЗАПАСЫ И ДОБЫЧА

Самые большие месторождения хрома находятся в ЮАР (1 место в мире), Казахстане, России, Зимбабве, Мадагаскаре. Также есть месторождения на территории Турции, Индии, Армении, Бразилии, на Филиппинах.nГлавные месторождения хромовых руд в РФ известны на Урале (Донские и Сарановское). Разведанные запасы в Казахстане составляют свыше 350 миллионов тонн (2 место в мире)Хром встречается в природе в основном в виде хромистого железняка Fe(CrO 2) 2 (хромит железа). Из него получают феррохром восстановлением в электропечах коксом (углеродом). Чтобы получить чистый хром, реакцию ведут следующим образом:
1) сплавляют хромит железа с карбонатом натрия (кальцинированная сода) на воздухе;
2) растворяют хромат натрия и отделяют его от оксида железа;
3) переводят хромат в дихромат, подкисляя раствор и выкристаллизовывая дихромат;
4) получают чистый оксид хрома восстановлением дихромата натрия углём;
5) с помощью алюминотермии получают металлический хром;
6) с помощью электролиза получают электролитический хром из раствора хромового ангидрида в воде, содержащего добавку серной кислоты.

ПРОИСХОЖДЕНИЕ

Среднее содержание Хрома в земной коре (кларк) 8,3·10 -3 % . Этот элемент, вероятно, более характерен для мантии Земли, так как ультраосновные породы, которые, как полагают, ближе всего по составу к мантии Земли, обогащены Хромом (2·10 -4 %). Хром образует массивные и вкрапленные руды в ультраосновных горных породах; с ними связано образование крупнейших месторождений Хрома. В основных породах содержание Хрома достигает лишь 2·10 -2 %, в кислых — 2,5·10 -3 %, в осадочных породах (песчаниках) — 3,5·10 -3 %, глинистых сланцах — 9·10 -3 % . Хром — сравнительно слабый водный мигрант; содержание Хрома в морской воде 0,00005 мг/л.
В целом Хром — металл глубинных зон Земли; каменные метеориты (аналоги мантии) тоже обогащены Хромом (2,7·10 -1 %). Известно свыше 20 минералов Хрома. Промышленное значение имеют только хромшпинелиды (до 54% Сr); кроме того, Хром содержится в ряде других минералов, которые нередко сопровождают хромовые руды, но сами не представляют практическое ценности (уваровит, волконскоит, кемерит, фуксит).
Различают три основных минерала хрома: магнохромит (Mg, Fe)Cr 2 O 4 , хромпикотит (Mg, Fe)(Cr, Al) 2 O 4 и алюмохромит (Fe, Mg)(Cr, Al) 2 O 4 . По внешнему виду они неразличимы, и их неточно называют «хромиты».

ПРИМЕНЕНИЕ

Хром - важный компонент во многих легированных сталях (в частности, нержавеющих), а также и в ряде других сплавов. Добавка хрома существенно повышает твердость и коррозийную стойкость сплавов. Использование Хрома основано на его жаропрочности, твердости и устойчивости против коррозии. Больше всего Хрома применяют для выплавки хромистых сталей. Алюмино- и силикотермический Хром используют для выплавки нихрома, нимоника, других никелевых сплавов и стеллита.
Значительное количество Хрома идет на декоративные коррозионно-стойкие покрытия. Широкое применение получил порошковый Хром в производстве металлокерамических изделий и материалов для сварочных электродов. Хром в виде иона Cr 3+ — примесь в рубине, который используется как драгоценный камень и лазерный материал. Соединениями Хрома протравливают ткани при крашении. Некоторые соли Хрома используются как составная часть дубильных растворов в кожевенной промышленности; PbCrO 4 , ZnCrO 4 , SrCrO 4 — как художественные краски. Из смеси хромита и магнезита изготовляют хромомагнезитовые огнеупорные изделия.
Используется в качестве износоустойчивых и красивых гальванических покрытий (хромирование).
Хром применяется для производства сплавов: хром-30 и хром-90, незаменимых для производства сопел мощных плазмотронов и в авиакосмической промышленности.

Хром (англ. Chromium) — Cr