Что такое молекула главного комплекса гистосовместимости. Главный комплекс генов гистосовместимости. Антигены MHC: история исследований………………………………………16


Чарлз Б . Карпентер (Charles В . Carpenter)

Антигены, обеспечивающие внутривидовые различия особей, обозначаются как аллоантигены, а когда они включаются в процесс отторжения аллогенных тканевых трансплантатов, то приобретают название антигенов тканевой совмести­мости (гистосовместимости). Эволюция закрепила единичный участок тесно сцепленных генов гистосовместимости, продукты которых на поверхности клеток обеспечивают сильный барьер при аллотрансплантации. Термины «major histocompatibility antigens» (главные антигены гистосовместимости) и «major histocompatibility gene complex» (MHC) (главный генный комплекс гистосовмести­мости) относятся соответственно к продуктам генов и генам этого хромосомного участка. Многочисленные минорные антигены гистосовместимости, наоборот, кодируются множественными участками генома. Им соответствуют более слабые аллоантигенные различия молекул, выполняющих разнообразные функции. Структуры, несущие детерминанты MHC, играют значительную роль в иммуни­тете и самораспознавании в процессе дифференцировки клеток и тканей. Инфор­мация о МНС-контроле иммунного ответа получена в опытах на животных, когда гены иммунного ответа были картированы внутри MHC-у мышей (Н-2), крыс (RT1), морских свинок (GPLA). У человека MHC назван HLA. Отдельным бук­вам аббревиатуры HLA придается различное значение, и с международного согласия HLA служит для обозначения человеческого МНС-комплекса.

Относительно MHC можно сделать несколько обобщений. Во-первых, в малом участке (менее 2 сантиморган) MHC кодируется три класса генных продуктов. Молекулы класса I, экспрессируемые практически всеми клетками, содержат одну тяжелую и одну легкую полипептидную цепи и являются продуктами трех редуплицированных локусов-HLA-A, HLA-B и HLA-C. Молекулы класса II, экспрессия которых ограничивается В-лимфоцитами, моноцитами и активирован­ными Т-лимфоцитами, содержат две полипептидные цепи (aи b) неравной вели­чины и являются продуктами нескольких тесно сцепленных генов, в сумме обо­значаемых как зона HLA-D. Молекулы класса III представляют собой компонен­ты комплемента С4, С2 и Bf. Во-вторых, молекулы классов I и II образуют комп­лекс с псевдоантигеном, или антиген гистосовместимости и псевдоантиген слитно распознаются Т-лимфоцитами, имеющими соответствующий рецептор для антиге­на. Распознавание своего и несвоего при запуске и в эффекторной фазе иммунно­го ответа непосредственно направляется молекулами I и II классов. В-третьих, четких ограничений межклеточных взаимодействий, в которых участвуют супрессорные Т-лимфоциты, у человека не выявлено, но роль генов HLA достаточно важна для некоторых проявлений супрессорной Т-клеточной активности. В-чет­вертых, в МНС-регионе локализуются гены ферментных систем, не имеющих непосредственного отношения к иммунитету, но важных для роста и развития скелета. Известные локусы HLA на коротком плече 6-й хромосомы представлены на 63-1.

Локусы системы HLA. Антигены класса I. HLA-антигены I класса определяются серологически с помощью человеческих сывороток, главным обра­зом от многорожавших женщин, и в меньшей степени с помощью моноклональных антител. Антигены I класса путствуют с разной плотностью во многих тканях организма, включая В-клетки, Т-клетки, тромбоциты, но не на зрелых эритроцитах. Количество серологически выявляемых специфичностей велико, и система HLA является наиболее полиморфной из известных генетических систем человека. Внутри HLA-комплекса для серологически выявимых HLA антигенов I класса четко определяются три локуса. Каждый антиген 1 класса содержит b 2 -микроглобулиновую субъединицу (мол. масса 11500) и тяжелую цепь (мол. масса 44000), несущую антигенную специфичность (63-2). Существует 70 четко определенных А- и В-специфичностей и восемь специфичностей локуса С. Обозначение HLA обычно путствует в наименовании антигенов главного комплекса гистосовместимости, но может не употребляться, когда позволяет контекст. Антигены, неокончательно классифицированные ВОЗ, имеют в обозна­чении букву w после названия локуса. Номер, следующий за обозначением локу­са, служит собственным названием антигена. HLA-антигены населения Африки, Азии и Океании в настоящее время недостаточно четко определены, хотя они включают часть общих антигенов, свойственных лицам западноевропейского происхождения. Распределение HLA-антигенов различно в разных расовых груп­пах, и они могут быть использованы как антропологические маркеры в изучении заболеваний и миграционных процессов.

63-1. Схематическое изображение хромосомы 6.

Показана локализация зоны HLA в регионе 21 короткого плеча. Локусы HLA-A, HLA-B и HLA-C кодируют тяжелые цепи класса I (44000), тогда как b 2 -микроглобулиновая легкая цепь (11500) молекул класса I кодируется геном хромосомы 15. Зона HLA-D (класс II) расположена центромерно по отношению к локусам А, В и С с тесно сцеп­ленными генами компонентов комплемента С4А, С4В, Bf и С2 на участке B-D. Порядок расположения генов комплемента не установлен. Каждая молекула класса II D-региона образована a- и b-цепями. Они путствуют на клеточной поверхности в разных участ­ках (DP, DQ и DR). Цифра, предшествующая знакам aи b, означает, что существуют различные гены для цепей данного типа, например, для DR существует три гена b-цепей, так что экспрессируемые молекулы могут быть 1ba, 2baили 3ba. Антигены DRw52(MT2) и DRw53(MT3) находятся на 2b-цепи, тогда как DR - на lb-цепи. DR неполиморфен, а молекулы DQ-антигенов полиморфны как по a-, так и по b-цепям (2a2b). Другие типы DQ (1a1b) имеют ограниченный полиморфизм. Полиморфизм DP связан с b-цепями. Общая протяженность HLA-региона- около 3 сМ.

Поскольку хромосомы парны, каждый индивид имеет до шести серологически определимых антигенов HLA-A, HLA-B и HLA-C, по три от каждого из родителей. Каждый из этих наборов обозначается как гаплотип, и в соответствии с простым менделевским наследованием четвертая часть потомства имеет идентичные гаплотипы, половина - часть общих гаплотипов и оставшаяся четверть - полностью несовместима (63-3). Значение роли этого генного комплекса в транспланта­ционном ответе подтверждается тем, что подбор по гаплотипу пар донор - реципиент среди потомства одного поколения обеспечивает наилучшие результа­ты при трансплантации почек - около 85-90% длительного выживания (гл. 221).

Антигены класса II. Зона HLA-D примыкает к локусам класса I на коротком плече 6-й хромосомы (63-1). Этот регион кодирует серию моле­кул класса II, каждая из которых содержит a-цепь (мол, масса 29000) и b-цепь (мол. масса 34000) (63-2). Несовместимость по этому региону, особенно по антигенам DR, определяет пролиферативную реакцию лимфоцитов in vitro. Смешанная лимфоцитарная реакция (MLR) оценивается по уровню пролиферации в смешанной культуре лимфоцитов (MLC) и может быть положительной даже при идентичности по антигенам HLA-A, HLA-B и HLA-C (63-3). Антигены HLA-D определяются с помощью стандартных стимулирующих лимфо­цитов, гомозиготных по HLA-D и инактивированных рентгеновскими лучами или митомицином С с целью придания реакции однонаправленности. Существует 19 таких антигенов (HLA-Dwl-19), обнаруженных с использованием гомозигот­ных типирующих клеток.

Попытки определения HLA-D серологическими методами сначала позволили обнаружить серию D-связанных (DR) антигенов, экспрессированных на молеку­лах класса II В-лимфоцнтов, моноцитов и активированных Т-лимфоцитов. Затем были описаны и другие тесно сцепленные антигенные системы, которые получили различные наименования (MB, MT, DC, SB). Идентичность отдельных групп молекул класса II сейчас установлена, и гены соответствующих a - и b-цепей выделены и секвенированы. Генная карта класса II, представленная на 63-1, отражает минимальное число генов и молекулярных участков. Хотя молекула масса II может содержать DRaиз гаплотипа одного из родителей, a DRb- другого (транскомплементация), комбинаторика вне каждого из участков DP, DQ, DR редка, если вообще возможна. Молекулы DR и в определенной степени DQ могут служить стимулами для первичной MLR. Вторичная MLR определяется как тест с примированными лимфоцитами (PLT) и дает возможность получить результат через 24-36 ч вместо 6-7 дней для первичной реакции. Аллоантигены DP были открыты благодаря их способности вызывать стимуляцию PLT, хотя они не дают первичной MLR. Хотя В-лимфоциты и активированные Т-лимфоциты экспрессируют все три набора молекул класса II, антигены DQ не экспрессируются на 60-90% DP- и DR-позитивных моноцитов.

63-2. Схематическое изображение молекул кле­точной поверхности клас­сов I и II.

Молекулы класса I состоят из двух полипептидных це­пей. Тяжелая цепь с мол. массой 44 000 проходит сквозь плазматическую мем­брану; ее наружный участок состоит из трех доменов (a 1 , a 2 и a 3), формируемых дисульфидными связями. Легкая цепь с мол. массой 11500 (b 2 -микроглобулин, b2мю) кодируется хромосомой 15 и нековалентно связана с тяжелой цепью. Аминокис­лотная гомология между мо­лекулами I класса состав­ляет 80-85%, снижаясь до 50% в участках a 1 и a 2 , которые, вероятно, соответ­ствуют участкам аллоантигенного полиморфизма. Мо­лекулы класса II образова­ны двумя нековалентно связанными полипсптидными цепями, a-цепь с мол. массой 34000 и b-цепь с мол массой 29000. Каждая цепь содержит два домена, сформиро­ванных дисульфидными связями (из С. Б. Carpenter, E. L. Milford, Renal Transplantation: Immunobiology in the Kidnev/Eds. B. Brenner, F. Rector, New York: Samiders, 1985).

63-3. HLA-зона хромосомы 6: наследование HLA-гаплотипов. Каждый хромосомный сегмент сцепленных генов обозначается как гаплотип, и каждый индивид наследует по одному гаплотипу от каждого родителя. На диаграмме пред­ставлены антигены А, В и С гаплотипов а и b для данного гипотетического индивида; ниже раскрыты обозначения гаплотипов в соответствии с текстом. Если мужчина с гаплотипом ab женится на жен­щине с гаплотипом cd, потомки могут быть только четырех ти­пов (с точки зрения HLA). Если в мейозе у одного из родителей происходит рекомби­нация (отмечена прерывистыми линиями), то это приводит к формированию измененного гап-лотнпа. Частота измененных гап­лотипов у детей служит мерой расстояний на генетической кар­ге (1% частота рекомбина­ций== 1 сМ; 63-1) (из Г.. В. Carpenter. Kidney Inter­national, Г)78. 14. 283).

Молекулярная генетика. Каждая полипептидная цепь молекул классов I и II содержит несколько полиморфных участков в дополнение к «част­ной» антигенной детерминанте, определяемой с помощью антисывороток. В тесте клеточно-опосредованного лимфолиза (CML) определяется специфичность киллерных Т-клеток (Тк), которые возникают в процессе пролиферации при MLR, путем тестирования на клетках-мишенях от доноров, не служивших источником стимулирующих клеток для MLR. Антигенные системы, определяемые этим мето­дом, обнаруживают тесную, но неполную корреляцию с «частными» антигенами класса 1. Клонирование циготоксических клеток позволило обнаружить набор полиморфных детерминант-мишеней на молекулах HLA, некоторые из которых невозможно выявить с помощью аллоантисывороток и моноклональных антител, полученных иммунизацией мышей человеческими клетками. Некоторые из этих реагентов могут быть использованы для идентификации «частных» детерминант HLA, в то время как другие направлены к более «общим» (иногда называемым супертипируемыми) детерминантам. Одна такая система «общих» HLA-B антиге­нов имеет два аллеля, Bw4 и Bw6. Большинство «частных» HLA-B связаны или с Bw4, или с Bw6. Другие системы сопряжены с подгруппами HLA антигенов. Например, HLA-B-позитивные тяжелые цепи содержат дополнительные участки, общие для В7, В27, Bw22 и В40 или для В5, В15, В18 и Bw35. Существуют и другие типы перекрывающихся антигенных детерминант, о чем свидетельствует реакция моноклональных антител с участком, общим для тяжелых цепей HLA-A и HLA-B. Изучение аминокислотной последовательности и псптидных карт не­которых молекул HLA показало, что гипервариабельные участки антигенов клас­са I сосредоточены в наружном a 1 -домене (63-2) и прилегающем участке a 2 -домена. Вариабельные последовательности молекул класса II различны для разных локусов. Замечательно, что a 3 -домен класса I, a 2 -домен класса II и b 2 -домен, а также часть мембранной молекулы Т8 (Leu 2), участвующей в межкле­точных взаимодействиях (гл. 62), обнаруживают значительную гомологию последовательности аминокислот с константными зонами иммуноглобулинов. Это подтверждает гипотезу об эволюционном формировании семейства генных продуктов, которые несут функции иммунологичсского распознавания. При иссле­довании геномной ДНК HLA для молекул классов I и II были обнаружены типич­ные экзон-интронные последовательности, причем экзоны были идентифицированы для сигнальных пептидов (5) каждого из доменов, трансмембранного гидро­фобного сегмента и цитоплазматического сегмента (З). Имеются пробы кДНК для большинства цепей HLA, а применение ферментативных гидролизатов для оценки состояния полиморфизма рестрикционных фрагментов по длине (ПДРФ), позволило получить данные, которые коррелируют с результатами изучения молекул класса 11 серологическими методами в MLR. Однако многочисленность (20-30) генов класса 1 делает оценку полиморфизма по ПДРФ затруднитель­ной. Многие из этих генов не экспрессируются (псевдогены), хотя некоторые могут соответствовать дополнительным локусам класса I, которые экспрессируют­ся только на активированных Т-клетках; функции их неизвестны. Разработка специфических проб на локусы HLA-A и HLA-B поможет разобраться в этой достаточно сложной проблеме.

Комплемент (класс III). Структурные гены трех компонентов комплемента-С4, С2 и Bf-путствуют в зоне HLA-B-D (63-1). Это два локуса С4, кодирующие С4А и С4В, первоначально описанные как эритроцитарные антигены Rodgers и Chido соответственно. Эти антигены оказались в дей­ствительности абсорбированными из плазмы молекулами С4. Другие компоненты комплемента не имеют тесного сцепления с HLA. Между генами С2, Bf и С4 кроссинговера не описано. Все они кодируются участком между HLA-B и HLA-DR длиной около 100ко. Существуют два аллеля С2, четыре Bf, семь С4А и три С4В, кроме того, в каждом локусе имеются молчащие аллели QO. Исклю­чительная полиморфность гистотипов комплемента (комплотипы) делает эту систему пригодной для генетических исследований.

Таблица 63-1. Наиболее распространенные гаплотины HLA

В табл. 63-1 представлены четыре наиболее широко распространенных гаплотипа, обнаруженных у лиц западноевропейского происхождения. Результаты MLR у людей, не состоящих в родстве, отобранных по признаку совместимости по этим гаплотипам, отрицательны, в то же время реакция обычно имеет место, если неродственные индивиды подобраны только на совместимость по HLA-DR и DQ. Такие идентичные распространенные гаплотипы, возможно, в неизменном виде происходят от единого предка.

Другие гены 6-й хромосомы. Недостаточность стероид 21-гидроксилазы, аутосомно-рецессивный признак, вызывает синдром врожденной гипер­плазии надпочечников (гл. 325 и 333). Ген для этого фермента локализуется на участке HLA-B-D. Ген 21-гидроксилазы, прилегающий к гену С4А, делетирован у лиц, страдающих упомянутым синдромом, вместе с С4А (C4AQO), и ген HLA-B может трансформироваться с конверсией В 13 в редкий Bw47, обнаруживаемый только в измененных гаплотипах. В отличие от поздно проявляющегося дефици­та 21-гидроксилазы, сцепленного с HLA, врожденная гиперплазия надпочечников, связанная с дефицитом 21b-гидроксилазы, не сцеплена с HLA. В нескольких семейных исследованиях показано, что идиопатический гемохроматоз, аутосомно-рецессивное заболевание, сцеплено с HLA (гл. 310). Хотя патогенез рас­стройств всасывания железа в желудочно-кишечном тракте неизвестен, установ­лено, что гены, модулирующие этот процесс, находятся вблизи участка HLA-A.

Таблица 63-2. Сцепление генетических дефектов

Локализация

Обнаруживаемые

гаплотипы

Дефицит С2

Aw25, B18, BfS, DR2

Дефицит 21-ОН

A3, Bw47, BfF, DR7

Дефицит 21-ОН (позднее про­явление)

Идиопатический гемохроматоз

Болезнь Педжета

Спинно-мозжечковая атаксия

Болезнь Ходжкина

63-4. Схема относительной роли HLA-A, HLA-B, HLA-C и HLA-D анти­генов в инициации аллоиммунного ответа и в образовании эффекторных клеток и антител.

Два главных класса Т-лимфоцитов распознают антигены: Тк - предшественники цитотоксических «киллерных» клеток и Тх-хелперные клетки, способствующие развитию цитотоксического ответа. Тх также обеспечивают помощь В-лимфоцитам при развитии «зрелого» IgG-ответа. Важно отметить, что Тк обычно распознают антигены класса I, тогда как сигнал для Тх создает преимущественно HLA-D, который тесно связан с анти­генами класса II (из С. В. Carpenter.- Kidney International, 1978, 14, 283).

Гены иммунного ответа. При изучении in vitro ответа на синтети­ческие полипептидные антигены, гемоцианин, коллаген, столбнячный токсоид выявлено, что зона HLA-D аналогична региону Н-2. I у мыши. Презентация антигенных фрагментов на поверхности макрофагов или других клеток, несущих молекулы II класса, требует сопряженного распознавания комплекса «молекула II класса + антиген» Т-лимфоцитами, несущими соответствующий рецептор (ы) (гл. 62). Стержнем этой гипотезы «свое-)-Х» или «измененное свое» состоит в том, что Т-зависимый иммунный ответ, действие Т-хелперов/индукторов (Тх) осуществляется только в том случае, если будут синтезированы соответствующие детерминанты класса II. Гены последних и есть Ir-гены. Поскольку аллогенные детерминанты класса И распознаются как уже измененные, аллогенная MLP представляет собой модель иммунной системы, в которой путствие псевдоанти­гена необязательно (63-4). Эффекторные фазы иммунитета требуют распо­знавания псевдоантигена в комплексе с собственными структурами. Последние у человека, как и у мыши, представляют собой молекулы антигенов гистосовместимости I класса. Человеческие клеточные линии, инфицированные вирусом грип­па, лизируются иммунными цитотоксическими Т-лимфоцитами (Тк) только в том случае, если реагирующие клетки и клетки-мишени идентичны по локусам HLA-A и HLA-B. Аллогенная MLR служит моделью и для формирования цитотоксических Т-лимфоцитов, рестриктированных по классу I (63-4). Дета­ли рестрикции по различным молекулам классов I и II и эпитопам могут быть вычленены при использовании примированных клеток, подвергшихся размноже­нию и клонированию. Например, на уровне антигенпрезентирующих клеток дан­ный Тх-клон распознает антигенный фрагмент, комплексированный со специфи­ческим участком молекулы класса II, с помощью рецептора Ti. Рестриктирующими элементами.для некоторых микробных антигенов являются аллели DR и Dw.

Супрессия иммунного ответа (или, низкий уровень отвечаемости) к пыльце кедра, антигенам стрептококков и шистосом доминантна и сцеплена с HLA, что свиде­тельствует о существовании генов иммунной супрессии (Is). Показано также наличие специфических аллельных ассоциаций HLA с уровнем иммунного ответа, например, для антигена клещевины Ra5 - с DR2 и для коллагена - с DR4.

Ассоциации с болезнями. Если главный комплекс гистосовместимости вы­полняет важную биологическую функцию, то какова эта функция? Одна из гипо­тез состоит в том что он играет роль в иммунном надзоре за неопластическими клетками, появляющимися в течение жизни индивида. Велико значение этой системы при беременности, поскольку между матерью и плодом всегда существует тканевая несовместимость. Высокая степень полиморфизма может также способ­ствовать выживаемости видов в противостоянии огромному числу микробных агентов путствующих в окружающей среде. Толерантность к «своему» (аутотолерантность) может перекрестие распространяться на микробные антигены, следствием которой будет высокая восприимчивость, приводящая к возникнове­нию смертельных инфекций, в то время как полиморфизм по системе HLA спо­собствует тому что часть популяции распознает опасные агенты как чужеродные и включает адекватную ответную реакцию. Эти гипотезы связывают роль HLA с преимуществами, благодаря которым система выживает в условиях давления отбора Каждая из этих гипотез имеет определенные подтверждения.

Важным свидетельством роли комплекса HLA в иммунобиологии послужило обнаружение положительной ассоциации некоторых патологических процессов с антигенами HLA. Изучение этих ассоциаций было стимулировано открытием генов иммунного ответа, сцепленных с Н-2-комплексом, у мышеи. В табл. 63-3 суммированы наиболее значимые ассоциации HLA и болезней.

Установлено что частота встречаемости HLA-B27 повышается при некоторых ревматических заболеваниях, особенно при анкилозирующем спондилите, заболе­вании явно семейного характера. Антиген В27 имеется лишь у 7% лиц западно­европейского происхождения, но его обнаруживают у 80-90% больных анкило­зирующим спондилитом. В пересчете на относительный к это означает, что этот антиген ответствен за восприимчивость к развитию анкилозирующего спон­дилита, которая в 87 раз выше у его носителей, чем в общей популяции. Анало­гично показана высокая степень ассоциации с антигеном В27 острого переднего увеита, синдрома Рейтера и реактивных артритов по крайней мере при трех бактериальных инфекциях (иерсиниозе, сальмонеллезе и гонорее). Хотя обычная форма ювенильного ревматоидного артрита также ассоциирована с В27, тип забо­левания со слабо выраженным суставным синдромом и иритом связан с В27. При псориатическом артрите центрального типа чаще встречается В27, тогда как Bw38 ассоциирован как с центральным, так и с периферическим типами. Псориаз ассоциирован с Cw6. У больных с дегенеративным артритом или подаг­рой не обнаруживается каких-либо изменений в частоте встречаемости антигенов.

Большинство других ассоциаций с болезнями свойственно антигенам HLA-D-зоны Например, глютенчувствительная энтеропатия у детей и взрослых ассо­циирована с антигеном DR3 (относительный к 21) Действительный процент больных с данным антигеном варьирует от 63 до 96% в сравнении с 22-27% в контроле. Тот же антиген чаще обнаруживается у больных с активным хрони­ческим гепатитом и герпетиформным дерматитом, страдающих в то же время и глютенчувствительной энтеропатией. Ювенильный инсулинзависимыи сахарный диабет (тип I) ассоциирован с DR3 и DR4 и отрицательно ассоциирован с DR2 У 17-25% больных диабетом I типа обнаружен редкий аллель Bf (М). Диабет с началом во взрослом периоде жизни (типа II) не имеет ассоциации с HLA. Гипертиреоидизм в США ассоциирован с В8 и Dw3, в то время как в японской популяции - с Bw35. Более широкое обследование здоровых и больных предста­вителей различных рас поможет прояснить вопрос об универсальных HLA-маркерах. Например, антиген В27, редкий у здоровых лиц японской национальности, обычен у больных с анкилозирующим спондилитом. Точно так же DR4 - маркер тля диабетаI типа у представителей всех рас. Иногда HLA-маркер явно ассо­циирован только с частью симптомов внутри синдрома. Например, миастения зна­чительно сильнее ассоциирована с антигенами В8 и DR3 у больных без тимомы, а рассеянный склероз - с антигеном DR2 у лиц с быстро прогрессирующим течением болезни. Синдром Гудпасчера, связанный с аутоиммунным поражением клубочковых базальных мембран, идиопатический мембранозный гломерулонефрит, отражающий аутоиммунные процессы с образованием антител к антиге­нам клубочков, а также мембранозный нефрит, индуцированный золотом, в зна­чительной степени ассоциированы с HLA-DR.

Таблица 63-3. Заболевания, ассоциированные с HLA-антигенами

Заболевания

Относительный к

Ревматоидные

Анкилозирующий спондилит

Синдром Рейтера

Острый передний увеит

Реактивный артрит (Yersinia, Salmonella, Gonococcus)

Псориатический артрит (центральный)

Псориатический артрит (периферический)

Ювенильный ревматоидный артрит

Ювенильный артрит со слабо выраженным суставным синдромом

Ревматоидный артрит

Синдром Шегрена

Системная красная волчанка

Системная красная волчанка (в результате

приема апрессина)

Желудочно-кишечные

Глютенчувствительная энтеропатия

Хронический активный гепатит

Язвенный колит

Гематологические

Идиопатический гемохроматоз

Пернициозная анемия

Герпетиформный дерматит

Псориаз вульгарный

Псориаз вульгарный (в японской популяции)

Пузырчатка вульгарная (в европейской попу ляции)

Болезнь Бехчета

Эндокринные

Сахарный диабет I типа

Гипертиреоидизм

Гинертиреоидизм (в японской популяции)

Заболевания

Наиболее тесно ассоциированные антигены

Относительный к

Недостаточность надпочечников

Подострый тиреоидит (de Quervain)

Тиреоидит Хашимото

Н еврологические

Миастения

Рассеянный склероз

Маниакально-депрессивное расстройство

Шизофрения

Почечные

Идиопатический мембранозный гломеруло-

Болезнь Гудпасчера (анти-GMB)

Болезнь минимальных изменений (стероидный

Полицистозная болезнь почек

IgA-нефропатия

Нефропатия, вызванная золотом

Инфекционные

Туберкулоидная лепра (в азиатской попу­

Полнопаралич

Низкий ответ на вирус вакцины

Иммунодефицитные

Дефицит IgA (доноры крови)

Неравновесное сцепление. Хотя распределение аллелей HLA варьирует в расовых и этнических популяциях, наиболее характерную особенность популяционной генетики антигенов HLA представляет наличие неравновесного сцепле­ния для некоторых антигенов А и В, В и С, В, D и локусов комплемента. Неравно­весность сцепления означает, что антигены тесно сцепленных локусов оказывают­ся вместе чаще, чем следует из предположения о случайной ассоциации. Класси­ческим примером неравновесного сцепления является связь антигена локуса AHLA-A1 с антигеном локуса В HLA-B8 у лиц западноевропейского происхож­дения. Одновременное наличие А1 и В8, рассчитанное на основе частот их генов, должно наблюдаться с частотой 0,17. 0,11, т. е. примерно 0,02. Тогда как на­блюдаемая частота их сосуществования составляет 0,08, т. е. в 4 раза больше, чем ожидаемая, и разность между этими величинами составляет 0,06. Последняя величина обозначается дельта (D) и служит мерой неравновесности. Обнаружено неравновесное сцепление и других гаплотипов А- и В-локусов: A3 и В7, А2 и В 12, А29 и В 12, A11 и Bw35, Для некоторых детерминант D-зоны описано нерав­новесное сцепление с антигенами В-локуса (например, DR3 и В8); а также для антигенов В- и С-локусов. Серологически выявляемые антигены HLA служат маркерами для генов целого гаплотипа внутри семейства и маркерами специ­фических генов в популяции, но только при наличии неравновесного сцепления.

Значение неравновесного сцепления велико, поскольку такие генные ассоциа­ции могут порождать определенные функции. Давление отбора в процессе эволю­ции может быть основным фактором в сохранении некоторых генных комбинаций в генотипах. Так, например, существует теория, согласно которой А1 и В8, а также некоторые детерминанты D и других регионов обеспечивают селективное преимущество перед лицом эпидемий таких болезней, как чума или оспа. Однако возможно также, что потомки людей, выживших во время подобных эпидемий, сохраняют восприимчивость к иным болезням, поскольку их уникальный генный комплекс не обеспечивает адекватный ответ на другие факторы окружающей среды. Главная трудность этой гипотезы состоит в допущении, что отбор действу­ет на несколько генов одновременно и обеспечивает тем самым возникновение наблюдаемых значений Л, однако потребность в сложных взаимодействиях между продуктами разных локусов МНС-комплекса - лишь начальное звено для на­блюдаемых явлений и селекция может усилить множественное неравновесное сцепление. Сохранение некоторых распространенных гаплотипов, названных вы­ше, поддерживает этот взгляд.

С другой стороны, гипотеза отбора необязательно должна объяснять нерав­новесное сцепление. Когда популяция, лишенная некоторых антигенов, скрещи­вается с другой, для которой характерна высокая частота этих антигенов, нахо­дящихся в равновесии, Dможет проявиться через несколько поколений. Напри­мер, нарастание Dдля А1 и В8, обнаруженное в популяциях в направлении с востока на запад, от Индии к Западной Европе, может быть объяснено на основе миграции и ассимиляции населения. В малых группах неравновесность может быть обусловлена совместимостью, эффектом основателей и дрейфом генов. Наконец, некоторые случаи неравновесного сцепления являются результатом неслучайного кроссинговера во время мейоза, так как хромосомные сегменты могут быть в большей или меньшей степени ломкими. Будь то давление отбора или ограничения кроссинговера, неравновесность сцепления может исчезать в течение нескольких поколений. Большое число неслучайных ассоциаций имеется в HLA-генном комплексе и определение их причин может обеспечить проникнове­ние в механизмы, лежащие в основе чувствительности к болезням.

Сцепление и ассоциации. В табл. 63-2 перечислены болезни, служащие приме­ром сцепления с HLA, когда наследственные признаки маркируются в пределах се­мьи соответствующими гаплотипами. Например, дефицит С2, 21-гидроксилазы, идиопатический гемохроматоз наследуются по рецессивному типу с наличием часгичного дефицита у гетерозигот. Эти генетические нарушения также являются HLA-ассоциированными и обусловливаются избытком некоторых HLA-аллелей у боль­ных людей, не состоящих в родстве. Дефицит С2 обычно сцеплен с гаплотипами HLA-Aw 25, В 18, В55, D/DR2, а при идиопатическом гемохроматозе проявляется как сцепление, так и сильная ассоциация между HLA-A3 и В 14. Высокая степень неравновесного сцепления в этом случае вызвана мутациями у лица, послужившего его источником; кроме того, недостаточен был период времени, необходимый для возвращения пула генов в состояние равновесия. С этой точки зрения HLA-гены - простые маркеры сцепленных генов. С другой стороны, для проявления конкретного нарушения может требоваться взаимодействие со специфическими HLA-аллелями. Последняя гипотеза потребовала бы признания более высокого темпа мутаций с экспрессией дефектных генов, что происходит только при условии сцепления с не­которыми HLA-генами.

Болезнь Педжета и спинно-мозжечковая атаксия являются HLA-сцепленными аутосомно-доминантными наследственными заболеваниями; они обнаруживаются сразу у нескольких членов семьи. Болезнь Ходжкина служит проявлением HLA-сцепленного рецессивного наследственного дефекта. Никаких HLA-ассоциаций не было обнаружено при этих заболеваниях, что свидетельствует в пользу исходной множественности «основоположников» этих болезней с мутациями, связанными с различными аллелями HLA.

Сцепление с HLA без труда определяется, когда доминантность и рецессив­ность признаков легко разграничить, т. е. когда высока экспрессивность и процесс детерминируется дефектом единичных генов. При большинстве ассоциаций HLA-маркеры отражают факторы ка, вовлекаемые в реализацию и модуляцию иммун­ного ответа под влиянием множественных генов. Примером полигенного иммунного заболевания является атоническая аллергия, при которой ассоциация с HLA может быть очевидной только у лиц с низким генетически контролируемым (не в связи с HLA) уровнем продукции IgE. Другой пример такого рода - дефицит IgA (табл. 63-3), ассоциированный с HLA-DR3.

Клиническое значение системы HLA. Клиническое значение типирования HLA для диагностики ограничивается определением В27 при диагностике анкилозирую­щего спондилита; тем не менее и в этом случае наблюдается 10% ложноположи­тельных и ложноотрицательных результатов. Изучение HLA имеет ценность также в практике генетических консультаций для раннего определения болезней в семьях с идиопатическим гемохроматозом, врожденной гиперплазией надпочечников, связанной с дефицитом стероидгидроксилазы, в особенности если HLA-типирование осуществляется на клетках, полученных амниоцентезом. Высокая степень полиморфизма в системе HLA делает ее ценным инструментом для тестирования различных клеточных препаратов, в особенности в судебно-медицинской практике. Некоторые болезни, такие как сахарный диабет I типа и другие, для которых пока­заны HLA-ассоциации, требуют дополнительного изучения роли компонентов системы HLA в патогенезе этих заболеваний.

При первой пересадке сердца человека, сделанной в 1967 г. К. Барнардом, и сотнях последующих хирурги столкнулись с проблемой отторжения трансплантата. Оказалось, что главная трудность заключается не в технике операции, которая сейчас разработана достаточно хорошо, а в несовместимости тканей, обусловленной иммунологическими механизмами. Так, у челове­ка выживание трансплантатов реципиентов, взятых от случайно­го донора, составляет 10,5 дня, тогда как трансплантаты, обме­ненные между однояйцовыми близнецами (изотрансплантаты), приживаются. Это происходит благодаря наличию на поверхнос­ти клеток антигенов, называемых трансплантационными антиге­нами или антигенами гистосовместимости. Большинство транс­плантационных антигенов расположены на лейкоцитах, но они имеются и на всех других ядросодержащих клетках (клетках кожи, легких, печени, почек, кишечника, сердца и т. д.). Гены, кодирующие эти антигены, называются генами тканевой совмес­тимости. Система генов, контролирующая трансплантационные антигены лейкоцитов, названа главным комплексом гистосов­местимости (англ. Major Histocompatibility complex - МНС). Гены гистосовместимости кодоминантны.

Эффективность трансплантации зависит не только от лейко­цитарных и эритроцитарных антигенов, но и от минорной систе­мы гистосовместимости. Трансплантаты между монозиготными близнецами приживаются. Однако у братьев и сестер при совпа­дении по МНС-гаплотипам, но несовпадении по минорным сис­темам гистосовместимости происходит отторжение транспланта­тов кожи.

После иммуноглобулинов и рецепторов Т-клеток белки глав­ного комплекса гистосовместимости самые разнообразные из всех белков. Различают два класса белков МНС. Белки класса I находятся на поверхности почти всех клеток. Молекула белка состоит из двух полипептидных цепей: большой и малой. Белки


МНС класса II имеются на поверхности некоторых клеток (В-" лимфоциты, макрофаги, специализированные эпителиальные., клетки), а их молекула состоит из примерно равных полипептид-* ных цепей. Белки МНС имеют некоторое сходство с иммуногло­булинами. Основная роль белков МНС состоит не в отторжении чужой ткани, а в направлении реакции Т-клеток на антиген. Цитотоксические Т-клетки могут узнавать антиген, если он расположен вместе с белками МНС класса I на поверхности одной клетки. Т-хелперы узнают антиген в комбинации с белками МНС класса П. Такое двойное стимулирование называется МНС-о граничением. Впервые главную систему тканевой совместимости мыши Н-2 открыл П. Горер в 1936 г. Кроме Н-2 найдено много локусов тканевой совместимости, расположенных во всех хромосомах.

В 1980 г. Д. Снелл, Ж. Доссе и Б. Бенацерафф получили Но­белевскую премию за «различные аспекты исследования, привед­шего к современному пониманию системы генов гистосовмести­мости человека». Д. Снелл сформулировал основные генетичес­кие законы совместимости тканей и получил данные о тонком строении локуса Н-2 у мышей.

Система Н-2 довольно хорошо изучена, поэтому она служит хорошей моделью для исследования МНС у других видов живот­ных. Комплекс Н-2 включает несколько тесно сцепленных локу­сов длиной 0,35 сМ, расположенных в 17-й хромосоме. Ком­плекс Н-2 разделен на пять областей: К, I, S, G, D (рис. 56).

Главный комплекс гистосовместимости………………………………………...3

Строение главного комплекса гистосовместимости……………………………6

Молекулы главного комплекса гистосовместимости…………………………..8

Функции Главного комплекса гистосовместимости…………………………..14

Антигены MHC: история исследований………………………………………16

Список использованной литературы…………………………………………...18
Главный комплекс гистосовместимости.

Главный комплекс гистосовместимости – это группа генов и кодируемых ими антигенов клеточной поверхности , которые играют важнейшую роль в распознавании чужеродного и развитии иммунного ответа.

Антигены, обеспечивающие внутривидовые различия особей, обозначаются как аллоантигены, а когда они включаются в процесс отторжения аллогенных тканевых трансплантатов, то приобретают название антигенов тканевой совместимости (гистосовместимости). Эволюция закрепила единичный участок тесно сцепленных генов гистосовместимости, продукты которых на поверхности клеток обеспечивают сильный барьер при аллотрансплантации. Термины «major histocompatibility antigens» (главные антигены гистосовместимости) и «major histocompatibility gene complex» (MHC) (главный генный комплекс гистосовместимости) относятся соответственно к продуктам генов и генам этого хромосомного участка. Многочисленные минорные антигены гистосовместимости, наоборот, кодируются множественными участками генома. Им соответствуют более слабые аллоантигенные различия молекул, выполняющих разнообразные функции.


Открытие MHC произошло при исследовании вопросов внутривидовой пересадки тканей.

Затем, первоначально в гипотетической, на основании клеточной феноменологии, а затем в экспериментально хорошо документированной форме с использованием методов молекулярной биологии было установлено, что Т-клеточный рецептор распознает не собственно чужеродный антиген, а его комплекс с молекулами, контролируемыми генами главного комплекса гистосовместимости. При этом и молекула MHC и фрагмент антигена контактируют с Т - клеточным рецептором.

MHC кодирует два набора высокополиморфных клеточных белков, названных молекулами MHC класса I и класса II. Молекулы класса I способны связывать пептиды из 8-9 аминокислотных остатков, молекулы класса II - несколько более длинные.

Высокий полиморфизм молекул MHC, а также способность каждой антигенпрезентирующей клетки (АПК) экспрессировать несколько разных молекул MHC обеспечивают возможность презентации T-клеткам множества самых различных антигенных пептидов.

Следует отметить, что хотя молекулы MHC и называются обычно антигенами, они проявляют антигенность только в том случае, когда распознаются иммунной системой не собственного, а генетически иного организма, например, при аллотрансплантации органов.

Наличие в МНС генов, большинство из которых кодирует иммунологически значимые полипептиды , заставляет думать, что этот комплекс эволюционно возник и развивался специально для осуществления иммунных форм защиты.

Существуют еще и молекулы MHC класса III , но молекулы MHC класса I и молекулы MHC класса II являются наиболее важными в иммунологическом смысле.

Главный комплекс гистосовместимости характеризуется крайне выраженным полиморфизмом . Ни одна другая генетическая система организма не имеет такого количества аллельных форм как гены МНС .

Долгое время биологический смысл столь выраженного полиморфизма оставался непонятным, хотя какое-то селективное значение такой аллельной изменчивости было очевидным. Впоследствии было доказано, что подобный полиморфизм прямо связан с процессом презентации антигенных детерминант Т-клеткам .

С полиморфизмом антигенов МНС связано такое явление, как генетический контроль иммунного ответа. В тех случаях, когда аминокислотные остатки, образующие антигенсвязывающую щель у молекул II класса , не в состоянии связать пептидный фрагмент чужеродного антигена, T-хелперы остаются ареактивными, и их помощь В-клеткам не реализуется. Это обстоятельство и является причиной генетически детерминированного дефекта в иммунном реагировании.

Основные события, которые привели к формированию разнообразия генов МНС в процессе эволюции связаны с тандемными дупликациями, точечными мутациями, рекомбинациями и конверсией генетического материала. Тандемные дупликации (процесс повторения исходного гена на той же самой хромосоме) хорошо известны для многих генетических систем, контролирующих синтез белков, например, иммуноглобулинов . Именно в результате этого процесса возникло несколько полигенных форм молекул MHC. Спонтанные замены отдельных нуклеотидов в процессе редупликации ДНК (точечные мутации) также хорошо известны, они приводят к формированию аллельных генов, которые также определяют полиморфизм белков. Рекомбинации между отдельными участками гомологичных хромосом в процессе мейоза могут привести к обмену как целых участков этих хромосом, так и отдельных генов и даже частей генов. В последнем случае процесс называется генной конверсией . Мутации, рекомбинации и конверсия генов создают многообразие их аллельных форм и определяют полиморфизм антигенов МНС.

Такая высокая степень полиморфизма имеет потенциальную ценность для выживания вида, и именно благодаря ей весь вид не становится жертвой мимикрии микробов, при которой они экспрессируют структуры, близкие по конформации к продуктам MHC . T-клетки , способные распознать неповторимую индивидуальную комбинацию специфичностей собственного организма, оказываются в состоянии реагировать на продукты такой мимикрии, как на чужеродные. Кроме того, возможно, что столь высокий сбалансированный полиморфизм продуктов MHC обеспечивает более широкое разнообразие антигенов, распознаваемых иммунной системой данного вида, а также гетерозиса (гибридной силы), поскольку у гетерозигот возникает максимальная комбинаторика аллелей. Братья и сестры имеют один шанс из четырех быть идентичными по антигенам MHC.
Строение главного комплекса гистосовместимости.

Методом хромосомной гибридизации установлено, что система МНС локализуется на коротком плече 6 аутосомной хромосомы человека, а у мышей – на 17 хромосоме.

Р
ис. 1. Схематическое изображение хромосомы 6.
Главный комплекс гистосовместимости занимает значительный участок ДНК, включающий до 4*106 пар оснований или около 50 генов. Основной особенностью комплекса является значительная полигенность (наличие нескольких неаллельных близкосцепленных генов, белковые продукты которых сходны в структурном отношении и выполняют идентичные функции) и ярковыраженный полиморфизм - присутствие многих аллельных форм одного и того же гена. Все гены комплекса наследуются по кодоминантному типу .

Полигенность и полиморфизм (структурная вариабельность) определяют антигенную индивидуальность особей данного вида.

Все гены MHC делятся на три группы. Каждая группа включает гены, контролирующие синтез полипептидов одного из трех классов MHC (I, II и III) ( рис. 3.5 ). Между молекулами первых двух классов имеются выраженные структурные различия , но при этом по общему плану строения все они однотипны. В то же время между продуктами генов класса III, с одной стороны, и классов I и II, с другой стороны, не найдено никакого функционального или структурного сходства. Группа из более чем 20 генов класса III вообще функционально обособлена - некоторые из этих генов кодируют, например, белки системы комплемента ( C4 , C2 , фактор B ) или молекулы, участвующие в процессинге антигена .

Область локализации генов, кодирующих комплекс молекул MHC мыши, обозначается как H-2 , для человека - HLA .

HLA-A , HLA-B и HLA-С - локусы хромосомы, гены которых контролируют синтез "классических" молекул (антигенов) I класса MHC человека и кодируют тяжелую цепь (альфа-цепь). Область этих локусов занимает участок длиной более 1500 т.п.н.

Синтез молекул (антигенов) II класса MHC человека контролируют гены области HLA-D , которые кодируют не менее шести вариантов альфа- и десяти вариантов бета-цепей ( рис.3.5 ). Эти гены занимают три локуса HLA-DP , HLA-DQ и HLA-DR . К продуктам их экспрессии относится большинство молекул II класса.

Кроме того, к области HLA-D относятся гены HLA-LMP и HLA-TAP . Низкомолекулярные белки, контролируемые этими генами, принимают участие в подготовке чужеродного антигена к презентации Т-клеткам.

Гены локусов человека HLA-A , HLA-B и HLA-С кодируют тяжелую цепь (альфа-цепь) "классических" молекул I класса MHC. Кроме того, найдены многочисленные дополнительные гены вне этих локусов, кодирующие "неклассические" молекулы MHC класса I и расположенные в таких локусах HLA , как HLA-X HLA-F, HLA-E, HLA-J, HLA-H, HLA-G, HLA-F.

Молекулы главного комплекса гистосовместимости.

Методами рентгеноструктурного анализа выяснена пространственная организация молекул MHC:

Молекулы MHC класса I (аллельные варианты HLA : HLA-A , HLA-B , HLA-С ) экспрессируются на клеточной поверхности и представляют собой гетеродимер, состоящий из одной тяжелой альфа-цепи (45 кДа), нековалентно связанной с однодоменным бета2-микроглобулином (12 кДа), который встречается также в свободной форме в сыворотке крови их называют классическими трансплатационными антигенами .

Тяжелая цепь состоит из внеклеточной части (образующей три домена : альфа1-, альфа2- и альфа3-домены), трансмембранного сегмента и цитоплазматического хвостового домена. Каждый внеклеточный домен содержит примерно 90 аминокислотных остатков, и все их вместе можно отделить от клеточной поверхности путем обработки папаином.

В альфа2- и альфа3-доменах имеется по одной внутрицепочечной дисульфидной связи, замыкающей в петлю 63 и 68 аминокислотных остатков, соответственно.

Домен альфа3 гомологичен по аминокислотной последовательности C-доменам иммуноглобулинов , и конформация альфа3-домена напоминает складчатую структуру доменов иммуноглобулинов .

Бета2-микроглобулин (бета2-m) необходим для экспрессии всех молекул MHC класса I и имеет неизменную последовательность , но у мыши встречается в двух формах, различающихся заменой одной аминокислоты в позиции 85. По структуре этот белок соответствует C-домену иммуноглобулинов . Бета2-микроглобулин способен также нековалентно взаимодействовать с неклассическими молекулами класса I , например, с продуктами генов CD1 .

В зависимости от вида и гаплотипа внеклеточная часть тяжелых цепей MHC класса I в разной степени гликозилирована.

Трансмембранный сегмент MHC I класса состоит из 25 преимущественно гидрофобных аминокислотных остатков и пронизывает липидный бислой, вероятнее всего, в альфа-спиральной конформации.

Основное свойство молекул I класса - связывание пептидов (антигенов) и представление их в иммуногенной форме для Т-клеток - зависит от доменов альфа1 и альфа2. Эти домены имеют значительные альфа- спиральные участки, которые при взаимодействии между собой образуют удлиненную полость (щель), служащую местом связывания процессированного антигена . Образовавшийся комплекс антигена с альфа1- и альфа2-доменами и определяет его иммуногенность и возможность взаимодействовать с антигенраспознающими рецепторами Т-клеток .

К классу I относятся антигены A , антигены AB и антигены AC .

Антигены класса I присутствуют на поверхности всех ядросодержащих клеток и тромбоцитов .

Молекулы MHC класса II являются гетеродимерами, построенными из нековалентно сцепленных тяжелой альфа- и легкой бета-цепей.

Ряд фактов указывает на близкое сходство альфа- и бета-цепей по общему строению. Внеклеточная часть каждой из цепей свернута в два домена (альфа1, альфа2 и бета1, бета2, соответственно) и соединена коротким пептидом с трансмембранным сегментом (длиной примерно 30 аминокислотных остатков). Трансмембранный сегмент переходит в цитоплазматический домен, содержащий примерно 10-15 остатков.

Антигенсвязывающая область молекул MHC класса II формируется альфа-спиральными участками взаимодействующих цепей подобно молекулам I класса , но при одном существенном отличии: антигенсвязывающая полость молекул MHC класса II формируется не двумя доменами одной альфа-цепи, а двумя доменами разных цепей - доменами альфа1 и бета1.

Общее структурное сходство между двумя классами молекул MHC очевидно. Это - однотипность пространственной организации всей молекулы, количество доменов (четыре), конформационное строение антигенсвязывающего участка.

В структуре молекул II класса антигенсвязывающая полость открыта больше, чем у молекул I класса, поэтому в ней могут поместиться более длинные пептиды.

Важнейшая функция антигенов MHC (HLA) класса II - обеспечение взаимодействия между Т-лимфоцитами и макрофагами в процессе иммунного ответа. Т-хелперы распознают чужеродный антиген лишь после его переработки макрофагами , соединения с антигенами HLA класса II и появления этого комплекса на поверхности макрофага.

Антигены класса II присутствуют на поверхности В-лимфоцитов , активированных Т-лимфоцитов , моноцитов , макрофагов и дендритных клеток .

Гены MHC класса II кодируют связанные с мембраной трансмембранные пептиды (гликопротеины). Молекулы антигенов гистосовместимости класса II ( DR , DP , DQ ) также как и класса I являются гетеродимерными белками, состоящими из тяжелой альфа-цепи (33 кДа) и легкой бета-цепи (26 кДа), кодируемые генами HLA -комплекса. Обе цепи формируют по два домена: альфа1 и альфа2, а также бета1 и бета2.

Продукты MHC класса II ассоциированы, главным образом, с B- лимфоцитами и макрофагами и служат распознаваемыми структурами для T- хелперов .

Гены MHC класса III, расположенные в пределах группы генов MHC или тесно сцепленные с ней, контролируют некоторые компоненты комплемента : C4 и C2 , а также фактор B , находящиеся скорее в плазме крови, чем на поверхности клеток. И в отличие от молекул MHC классаI и класса II не не участвуют в контроле иммунного ответа.

Термин MHC класса IV употребляется для описания некоторых локусов, сцепленных с MHC.

Изучение экспрессии молекул I и II классов MHC на различных типах клеток выявило более широкое тканевое распространение молекул I класса в сравнении с молекулами II класса. Если молекулы I класса экспрессируются практически на всех изученных клетках, то молекулы II класса экспрессируются, в основном, на иммунокомпетентных клетках или клетках, принимающих относительно неспецифическое участие в формировании иммунного ответа, таких, как клетки эпителия.

В табл. 1 представлены данные о характере тканевого распределения молекул МНС у мышей и человека.

табл. 1 Тканевое распределение молекул I и II классов МНС у мышей и человека


Тип клеток

Н-2 коплекс мышей

HLA комплекс человека

Класс I

Класс II

Класс I

Класс II

В-клетки

+

+

+

+

Т-клетки

+

(+)

+

(+)

Тимоциты

+

(+)

+

(+)

Макрофаги

+

+

+

+

Гранулоциты

.

.

+

-

Ретикулоциты

+

.

+

.

Эритроциты

+

-

-

-

Тромбоциты

+

-

+

-

Фибробласты

+

-

+

-

Эпителиальные клетки

+

.

+

+

Эпидермальные клетки

+

+

+

+

Печень

+

-

+

-

Почка

+

-

+

-

Сердечная мышца

+

-

+

-

Скелетная мышца

+

-

+

-

Мозг

+

-

(+)

.

Плацента

+

.

+

.

Сперматозоиды

+

+

+

+

Яйцеклетки

(+)

.

.

.

Трофобласт

-

.

(+)

.

Бластоциты

+

.

.

.

Эмбриональная ткань

+

.

+

.

Представительство молекул I класса почти на всех типах клеток коррелирует с доминирующей ролью этих молекул в отторжении аллогенного трансплантата. Молекулы II класса менее активны в процессе тканевого отторжения. Сравнительные данные о степени участия молекул I и II классов MHC в некоторых иммунных реакциях демонстрируют, что некоторые свойства МНС в большей степени связаны с одним из классов, тогда как другие являются характерной особенностью обоих классов(табл. 2)

Табл. 2 Участие молекул I и II классов МНС в некоторых иммунных реакциях

Функции Главного комплекса гистосовместимости.

Хотя молекулы MHC первоначально идентифицировали по их способности вызывать отторжение трансплантата, они выполняют в организме и другие биологически важные функции. Во-первых, они принимают непосредственное участие в инициации иммунного ответа, контролируя молекулы, представляющие антиген в иммуногенной форме для его распознавания цитотоксическими T-клетками и хелперными T-клетками. Во-вторых, в МНС локализованы гены, контролирующие синтез иммунорегуляторных и эффекторных молекул - цитокинов ФНО-альфа, ФНО-бета, а также некоторых компонентов комплемента.

Следует отметить их роль в качестве поверхностных клеточных маркеров, распознаваемых цитотоксическими T- лимфоцитами и T-хелперами в комплексе с антигеном. Молекулы, кодируемые комплексом Tla (область части генов MHC), вовлечены в процессы дифференцировки, особенно у эмбриона, а возможно, и в плаценте. MHC принимает участие в самых разных неиммунологических процессах, многие из которых опосредованы гормонами, например, регуляция массы тела у мышей или яйценоскости кур. Молекулы MHC класса I могут входить в состав гормональных рецепторов. Так, связывание инсулина заметно снижается, если с поверхности клетки удалить антигены MHC класса I, но не класса II. Кроме того, описаны случаи ассоциации продуктов MHC с рецепторами глюкагона, эпидермального фактора роста и гамма-эндорфина. На рис. 3 представлены функции продуктов MHC, а основные иммунологические свойства, связанные с MHC, перечислены в табл. 3 .

рис. 3 im MHC: функции


Табл. 3 Иммунологические свойства, связанные с MHC

Приведенные факты заставляют думать, что MHC эволюционно возник и развивался специально для осуществления иммунологических функций.

Особое место занимает вопрос о связи молекул MHC с заболеваниями. При некоторых формах неинфекционных заболеваний частота отдельных антигенов среди больных значительно выше, чем в популяции здоровых людей. Четких механизмов подобной корреляции установить не удается. Однако ясно, что при разных формах заболевания механизмы скорее всего различны. С помощью HLA-типирования удалось подтвердить общность некоторых расстройств или по-новому подойти к вопросу их классификации. Сделан важный вывод, что в организме имеются различные группы антигенов МНС ассоциируемых с заболеваниями. Одни из них связаны с резистентностью или, наоборот, с восприимчивостью, а , другие с остротой их течения и, наконец, третьи – с продолжительностью жизни больных.

В настоящее время стало очевидно, что продукты MHC класса II имеют решающее значение в патогенезе аутоиммунных заболеваний . В связи с этим неизбежно возникло стремление связать аутоиммунные заболевания с генами иммунореактивности, контролирующими ответ на соответствующий аутоантиген или на какой-либо вероятный этиологический агент.

Антигены MHC: история исследований.

В истории изучения антигенов гистосовместимости наиболее существенными являются следующие этапы:

1958 г. - открыт первый антиген гистосовместимости человека Mac (HLA-A2, Дж.Дассэ);

1966 г. - доказана ведущая роль HLA антигенов в развитии реакции отторжения трансплантата (Дж. ван Рууд и др.);

1972 г. - установлена корреляция между аллельными вариантами HLA антигенов и определенными заболеваниями (З.Фалчук и др.);

1973 г. - установлена структура HLA антигенов класса I (К.Накамура и др.);

1974 г. - показана роль антигенов гистосовместимости в ограничении иммунного ответа (двойное распознавание, Р.Цинкернагель, П.Доэрти);

1981 г. - осуществлено выделение и определение аминокислотной последовательности антигенов HLA класса II (Г.Кратцин и др.);

1983 г. - продемонстрирован биохимический полиморфизм HLA антигенов (Р.Василов и др.);

1987 г. - определена пространственная структура HLA-A2 антигена (П.Бeркман и др.);

1991-1993 г. - установлен характер распределения HLA антигенов в большинстве этнических групп планеты

Список использованной литературы.

Иммунология, под ред. Е. С. Воронина, М.: Колос –Пресс, 2002
Я. Кольман, К.- Г. Рем, Наглядная биохимия, М.: Мир 2000
Сочнев А.М. ,Алексеев Л.П. ,Тананов А.Т. Антигены системы HLA при различных заболеваниях и трансплантации. – Рига, 1987
www.humbio.ru
www.rusmedserver.ru/med/haris/60.html

МНС человека имеет акроним HLA (от англ. Human Leukocyte Antigens – антигены лейкоцитов человека). Это связано с тем, что они были впервые обнаружены на лейкоцитах человека в реакциях с сыворотками от многорожавших женщин и больных, получавших многократные гемотрансфузии. Такие сыворотки содержат антилейкоцитарные антитела, которые образуются в ответ на аллоантигены плода или доноров крови.

Комплекс HLA локализован на хромосоме 6, занимая область размером 3-4 6 пар нуклеотидов. Представления о масштабах HLA-генофонда заметно расширились с внедрением моноклональных анти-HLA антител и молекулярно-генетического анализа, т.е. прямого изучения HLA-генов. Согласно имеющимся данным комплекс HLA включает около 800 аллелей, альтернативное наследование которых обеспечивает беспрецедентную мозаику HLA-генотипов. В соответствии с генетической структурой HLA каждый индивид наследует около 20 аллельных генов (см. ниже). Благодаря столь малой выборке (20 из 800) вероятность полного совпадения индивидуальных HLA-генотипов (и, следовательно, HLA-фенотипов) ничтожно мала. Совпадение возможно лишь по отдельным аллелям или их комбинациям. Этим определяется вероятность относительно успешного приживления тканей в аллогенных парах «донор-реципиент».

Лишь малая часть МНС(HLA)-области кодирует антигены гистосовместимости. Кроме них здесь локализовано более 100 генов, которые не имеют отношения к тканевому полиморфизму и иммунологическим функциям молекул МНС. Тем не менее этот участок ДНК продолжают называть главным комплексом гистосовместимости, подчеркивая исторический приоритет и значимость MHC-зависимых реакций.

Дополнительное разнообразие вносит диплоидность соматических клеток, благодаря которой каждая из них содержит по два комплекта МНС-генов, на материнской и отцовской хромосомах. Это означает, что индивид может иметь не более двух аллелей каждого HLA-гена (по одному на материнской и отцовской хромосомах) и, следовательно, не более двух разновидностей каждого HLA-антигена.



Набор генов одной хромосомы, называется гаплотипом (от греч. haplous – единственный). МНС-гаплотипы кодоминантны, т.е. одинаково влияют на фенотип клеток. Это означает, что HLA-фенотип (т.е. полный комплект молекул HLA, экспрессируемых клетками данного организма) является суммарным выражением двух гаплотипов, унаследованных по материнской и отцовской линиям.

МНС(HLA)-фенотип можно определить как уникальную совокупность поверхностных антигенов, по которой клетки одного индивида отличаются от всех остальных особей данного вида животных. Следует понимать принципиальное различие между полиморфизмом молекул МНС и антигенных рецепторов В и Т лимфоцитов (BCR и TCR). В первом случае речь идет об аллотипии, связанной с альтернативным наследованием аллельных генов, циркулирующих в популяциях человека и животных; во втором – об идиотипии, т.е. о структурных вариантах одних и тех молекул, продуцируемых разными клонами клеток. Иными словами, идиотипия отражает гетерогенность молекул на уровне клеточных популяций, возникающую в результате мутаций и рекомбинационных перестроек генетического материала соматических клеток. Аллотипия определяется перетасовкой (рекомбинацией) генов в зародышевых клетках. Она связана с половым процессом и формируется на уровне «организменных» популяций.

Для всех видов животных характерно наличие двух основных классов МНС – МНС-I и МНС-II. При общей стратегии они различаются по генетической, структурной организации, тканевому распределению и функциям.

HLA-I. Молекулы I класса содержатся на поверхности клеток всех типов, кроме эритроцитов и ворсинчатого трофобласта. Они представляют гетеродимеры, состоящие из двух полипептидных цепей - тяжелой (46 кД) и легкой (12 кД) (рис. 1). Из них только тяжелая субъединица (α-цепь) является продуктом главного комплекса гистосовместимости, и именно с ней связаны иммунологические функции молекулы. α-цепь пронизывает плазматическую мембрану и имеет три внеклеточных домена – α1, α2 и α3. Вариабельность молекулы сконцентрирована в α1 и α2 доменах; домен α3 лишен полиморфизма.

Легкая (β) цепь представлена β2-микроглобулином. Это продукт гена, который локализован на хромосоме 15, т.е. не входит в состав комплекса HLA. β2-микроглобулин генетически однороден и напрямую не участвует в реализации функций HLA-I. Его роль сводится к транспорту α-цепи на поверхность клетки (у мутантных мышей, лишенных β2-микроглобулина, молекулы I класса не экспрессируются). β2-микроглобулин не имеет трансмембранного участка, удерживаясь на мембране за счет нековалентной связи с α3-доменом1.

Рис. 1. Структура молекул главного комплекса гистосовместимости (G. Reeves, p. 46).

Молекулы HLA-I представлены тремя наиболее важными подклассами – А (HLA-A), В (HLA-B) и С (HLA-C). Они кодируются одноименными генами, которым соответствует определенная позиция (локус) на хромосоме. По данным молекулярно-генетического анализа общее число аллельных вариантов для генов HLA-1 приближается к 400 (HLA-A – 108, HLA-B – 223, HLA-C – 67). Количество известных HLA-1 антигенов гораздо меньше – около 100 (HLA-A – 28, HLA-B – 61, HLA-C –10)1. Они обозначаются цифрами, которые добавляются к буквенному обозначению подкласса (например, А1, В27, С8).

В генотипе каждого человека имеется шесть генов HLA-I – по три в каждом гаплотипе. При несовпадении материнского и отцовского гаплотипов по генам всех трех локусов (А, В и С) индивид будет иметь наиболее полный HLA-фенотип, т.е. шесть аллотипических вариантов HLA-I (например, А4,14; В2,31; С4,10). Если гаплотипы частично дублируют друг друга, набор молекул HLA-I будет редуцирован (например, А4; В2,44; С6). То же самое справедливо для HLA-II (см. ниже).

Недавно открыты дополнительные локусы HLA-I: E, F и G. Их гены отличаются ограниченным полиморфизмом и необычным тканевым распределением своих продуктов (HLA-E, HLA-F и HLA-G). Функции этих так называемых «неклассических» HLA(МНС)-молекул неизвестны, но они не участвуют в представлении антигенов, по крайней мере «обычных пептидов» (см. ниже).

HLA-II. Молекулы II класса построены из двух нековалентно связанных пептидных цепей примерно одинакового размера – α (35 кД) и β (28 кД). Обе они являются продуктами главного комплекса гистосовместимости и участвуют в реализации его иммунологических функций. Каждая цепь состоит из двух внеклеточных доменов (α1-α2 и β1-β2), которые прочно фиксированы на клетках при помощи трансмембранного участка молекулы (рис. 8). Вариабельные последовательности входят в состав α1 и β1 доменов; α2 и β2 домены не имеют аллотипов.

В отличие от HLA-I, конститутивная (т.е. постоянная) экпрессия молекул II класса ограничена клетками иммунной системы, презентирующими антигены Т-хелперам. Это так называемые профессиональные антигенпредставляющие клетки – дендритные клетки, макрофаги, В-лимфоциты. Появление HLA-II на других клетках указывает на их активацию, т.е. является индуцибельным.

Впрочем, динамичность экспрессии молекул МНС (MHC-I, MHC-II) характерна для всех клеток. Она зависит от функционального состояния клетки, меняясь под влиянием различных стимулов (например, цитокинов). Это однин из механизмов, контролирующих индукцию и реализацию иммуного ответа.

Подобно HLA-I, молекулы HLA-II представлены тремя основными подклассами – DR, DQ и DP. Гены, кодирующие их α- и β-цепи, сконцентрированы в одноименных локусах на 6-й хромосоме. Наиболее полиморфны гены β-цепей: они представлены 367 аллельными вариантами (DR – 249, DQ – 36, DP – 82). Гены α-цепей гораздо однороднее – 36 разновидностей (DR – 3, DQ – 20, DP – 13).

Буква "D" ошибочно продолжает нотацию HLA, начатую локусами А, В и С. Эти обозначения возникли до разделения HLA на классы. Область D оказалась суммой нескольких локусов (DR, DQ, DP) и по сути является синонимом II класса. «Неклассические» молекулы HLA-II включают HLA-DM и HLA-DN. Их функции неизвестны или гипотетичны.

В генотипе каждого человека имеется 12 функционально значимых (т.е. экспрессируемых) генов HLA-II – шесть в каждом гаплотипе (по три гена для α (DRA, DQA, DPA) и β (DRB, DQB, DPB) цепей). В связи с доминированием полиморфизма В(β)-генов в цифровой формуле молекул II класса обычно указываются разновидности только β-цепей (например, R4,8/DQ1,6/DP5).

Функции МНС (HLA)

Отторжение чужеродных тканей, которое происходит в ситуациях, искусственно создаваемых человеком, ничего не говорит о физиологических функциях МНС. С этой точки зрения неудачна и терминология: понятие «главный комплекс гистосовместимости» не отражает природного назначения его продуктов. Это стало очевидным после утверждения центральной позиции МНС в представлении (презентации) антигенов Т-лимфоцитам. Возможно, это не единственное, но, безусловно, главное назначение данной системы.

МНС-зависимое представление антигенов имеет четкую направленность, которая проявляется в том, что молекулы I и II классов обеспечивают альтерантивную презентацию антигенов двум основным категориям Т-клеток – CD8 и CD4. Такая адресность объясняется лиганд-рецепторной комплементарностью в парах CD8 – МHC-I и CD4 – МНС-II. Это обеспечивает избирательное связывание CD8 с МНС-I (a3-домен), а CD4 – с МНС-II (b2-домен). Этим объясняется корецепторная функция молекул CD4 и CD8 в распознавании антигенов Т-лимфоцитами (рис. 2).

Зависимость реакций Т-лимфоцитов от МНС называется рестрикцией (от англ. restriction – ограничение). Говорят, что Т-лимфоциты рестриктированы по МНС, причем CD4 Т-лимфоциты рестриктированы по МНС(HLA)-I, а CD8 – по МНС(HLA)-II.

Рис. 2. Молекулы, принимающие участие в распознавании антигенов Т-лимфоцитами. Т-лимфоциты рестриктированы по МНС, т.е. распознают антигены (точнее продукты их протеолиза), презентируемые молекулами главного комплекса гистосовместимости (МНС) антигенпредставляющих клеток. А: Антигенные пептиды в комплексе с молекулами МНС-I воспринимаются CD8 Т-клетками. CD8 играет роль корецептора, реагируя с консервативным (неполиморфным) участком МНС-I. Взаимодействие в системе TCR-антиген/МНС-I-СD-8 генерирует сигнал, который усиливается и транслируется внутрь клетки при помощи CD3-комплекса. В: Антигенные пептиды, презентируемые молекулами МНС-II, воспринимаются CD4 Т-лимфоцитами. Благодаря комплементарности c МНС-II, СD4 выполняет функцию корецептора, укрепляя контакт между TCR и комплексом антиген/МНС-II. Сигнал транслируется в клетку молекулами костимулирующего CD3-комплекса (D.M. Weir, J. Stewart. Immunology. 8 th ed. Churchill & Levinstone. 1997).

Учитывая универсальность тканевого распространения молекул I класса, следует ожидать, что в представлении антигенов могут участвовать многие типы клеток. Именно так обстоит дело на этапе реализации иммунного ответа, когда любая клетка, презентирующая на своей поверхности “чужие” антигены в комплексе с МНС-I, атакуется цитотоксическими (СD8) Т-лимфоцитами. Активность молекул II класса связана главным образом с профессиональными антигенпредставляющими клетками. Они презентируют антигены Т-хелперам, опираясь на корецепторную активность CD4. Возможность индуцированной экспрессии МНС-II на эндотелиоцитах, эпителиальных и ряде других клеток допускает вероятность «непрофессиональной» MHC-II–презентации антигенов CD4 Т-лимфоцитам. Это возможно на этапе реализации иммунного ответа.

Для индукции иммунного ответа этого недостаточно. Здесь требуется более сложная кооперация антигенпредставляющих клеток и Т-лимфоцитов. Она происходит при участии нескольких пар комплементарных адгезивных молекул и цитокинов на территории лимфоидных тканей, т.е. в зоне, оптимальной для взаимодействия иммунокомпетентных клеток (см. «Индукция иммунного ответа»).

Презентация антигенов молекулами I и II классов происходит по общей схеме. Короткие пептиды (Т-эпитопы), которые образуются из белковых антигенов в результате внутриклеточного протеолиза (процессинг), соединяются с комплементарными молекулами МНС и вместе с ними выносятся на поверхность клетки*.

* Антигенные пептиды, воспринимаемые МНС-I и MHC-II, построены соответственно 9-10 и 12-25 аминокислот. Большинство из них являются внутренними фрагментами молекул, которые обнажаются после протеолиза. Пептидосвязывающий участок молекул МНС представляет собой щель, образуемую комбинацией вариабельных доменов: a1-a2 (MHC-I) и a1-b1 (MHC-II). Аллельные варианты МНС отличаются по конфигурации “пептидной ловушки” и, следовательно, по сродству к различным пептидам.

Принципиальное различие между МНС-I и MHC-II связано с источником (происхождением) представляемых антигенов. Молекулы I класса презентируют антигены, которые образуются внутри собственных клеток – “эндогенные пептиды”. К их числу относятся производные вирусных и опухолевых антигенов. Молекулы II класса воспринимают пептиды экзогенной природы. Они образуются из материала, поступающего в клетки извне, путем эндоцитоза.

Это различие не абсолютно. При гибели клеток синтезированные ими (т.е. эндогенные) антигены могут поглощаться дендроцитами и макрофагами и экспрессироваться в комплексе с MHC-II, как это характерно для экзогенных пептидов. Возможен и альтернативный механизм: переключение потока антигенных пептидов с экзогенного пути (комплексирование с MHC-II) на эндогенный (комплексирование с MHC-I). Такого рода перекрестная презентация содействует развитию полноценных Т-клеточных реакций, нацеленных, в частности, против вирусов, которые не реплицируются в профессиональных антигенпредставляющих клетках.

Повторим, что ассортимент каждого индивида ограничен примерно 20 вариантами аллельных генов и соответственно молекул MHC(HLA). Это несопоставимо с изобилием антигенных пептидов, которые потенциально могут быть представлены Т-лимфоцитам. Отюда следует, что каждая молекула МНС способна презентировать не один, а множество пептидов1. В то же время все пептиды, воспринимаемые однотипным вариантом МНС, имеют элементы структурного сходства, которые обеспечивают фиксацию в “пептидной ловушке” МНС. Это не лишает их антигенной (эпитопной) индивидуальности, так как специфичность Т-эпитопов определяется всего 1-2 аминокислотами.

Вероятность и прочность связывания разных пептидов с одной и той же молекулой МНС неодинакова, отражая степень родства (комплементарности) между пептидом и МНС. Справедливо и обратное: благодаря особенностям конфигурации пептидосвязывающего участка аллельные варианты МНС различаются по набору презентируемых ими пептидов. Здесь сконцентрирована идея о генетическом контроле иммунного ответа в системе МНС. Она сводится к тому, что индивиды с разными МНС(HLA)-фенотипами могут неодинаково (даже альтернативно) реагировать на один и тот же антиген. Это объясняется качеством взаимодействия антигенных пептидов с аллельными вариантами молекул МНС – от выраженной до нулевой аффинности. С этой точки зрения, концепция о генах, контролирующих силу иммунного ответа (Ir-гены, от англ. Immune response), во многом сливается с представлениями о главном комплексе гистосовместимости, прежде всего МНС-II. Это понятно, так как молекулы II класса презентируют антигены Т-хелперам, от активации которых зависят все формы иммунного ответа.

Презентация антигенов – сложный процесс, связанный с участием многих молекул. Для ряда из них возможны аллельные варианты, которые неодинаково влияют на функции МНС и поэтому тоже включаются в генетический контроль за иммунным ответом.

Влияние МНС на реактивность к антигенам наиболее отчетливо проявляется в опытах на линейных (инбредных) животных. Но положительные связи между МНС(HLA)-фенотипом и особенностями иммуного ответа известны и для человека. Так, носители аллелей HLA-DR2 и HLA-DR5 характеризуются склонностью к образованию IgE антител против аллергена пыльцы амброзии. Протективные пептиды вируса гриппа А встраиваются в молекулы В27 и А2; поэтому носители данных аллелей более устойчивы к гриппозной инфекции.

Загадкой остается предрасположенность к ряду болезней у лиц с определенным HLA-фенотипом, т.е. у носителей определенных HLA-I/HLA-II аллелей или их комбинаций. На этот счет имеется несколько гипотез, одна из которых базируется на неодинаковой способности аллотипических вариантов HLA связывать (презентировать) разные пептиды. Яркий пример – анкилозирующий спондилит (болезнь Бехтерева): около 90% больных являются носителями гена В27. Допускают, что молекулы этого аллотипа могут быть рецептором неизвестного вируса или избирательно представлять патогенетически значимые пептиды CD8 T-лимфоцитам.

Интригует и вопрос о причинах, приведших к формированию столь полиморфной системы генов и их продуктов. Согласно наиболее популярной версии главный комплекс гистосовместимости эволюционировал как механизм, обеспечивающий распознавание достаточно большого количества антигенов для оптимальной защиты каждого вида животных от инфекционных агентов. Бесконечное многообразие МНС-генотипов гарантирует полноценность антигенраспознающего потенциала иммунной системы на уровне популяции. В то же время каждый из ее отдельных представителей, обладая малой выборкой из общего числа аллельных МНС-генов, ограничен более узким набором антигенпрезентирующих молекул. Иными словами, индивидуализация МНС влияет на спектр воспринимаемых антигенов и, следовательно, на качество иммунитета против экзогенной агрессии. Неадекватные аллели и их комбинации выбраковываются естественным отбором.

Не исключено, что специфика МНС оказывает влияние и на другие проявления биологической индивидуальности. Непонятной (но, вряд ли, случайной) является экспрессия на поверхности клеток аутологичных (собственных) пептидов в комплексе с МНС-I. Более того, на долю чужих антигенов приходится ничтожная часть пептидов, встраиваемых в молекулы I класса. Возможно, за этим скрыт механизм, поддерживающий иммунологическую толерантность к собственным тканям, но смысл может быть и другим. Замечено, например, что МНС-генотип влияет на сексуальное поведение животных. При спаривании мыши отдают предпочтение партнерам гетерологичных линий, т.е. особям с другим МНС-генотипом. Поразительно, но речь скорее всего идет о способности дифференцировать структурные особенности МНС по запаху, т.е. продукты МНС-аллельных генов играют роль феромонов. В этом есть логика. Она нацелена на повышение генетического полиморфизма популяции.

Естественно, для человека это невозможно. Но утеряв функцию выбора сексуального партнера, HLA-система «пытается» защитить его от появления HLA-гомозигот. Было проведено сопоставление совместимых по антигенам HLA классов I и II супругов в группе с нормально протекающей беременностью и в группе с беременностью, неоднократно прерывавшейся спонтанным абортом. Оказалось, что в группе с физиологически протекающей беременностью более чем в половине случаев муж и жена были полностью несовместимы по HLA-II. Количество HLA-совместимых пар по антигенам класса I составило около 2%. Напротив, в группе женщин с привычной невынашиваемостью только 26% супружеских пар оказались несовеместимыми по антигенам HLA-I; совместимость по антигенам класса II наблюдалась более чем в половине случаев (цит. Р.М.Хаитов, Л.П.Алексеев. Физиологическая роль главного комплекса гистосовместимости человека. Иммунология, 2001, № 3, С. 4-12).


1От англ. B С ell R eceptor.

2 Мембраносвязанная и секреторная формы иммуноглобулинов образуются благодаря альтернативному сплайсингу первичного ДНК-транскрипта (мРНК). Секреторная форма лишена трансмембранного фрагмента, необходимого для закрепления молекулы на клеточной мембране.

3 На определенных этапах «доантигенной» дифференцировки В-лимфоциты содержат mIgD. Его участие в индукции иммунного ответа остается неясным. В отличие от IgM, лишь ничтожная часть IgD cекретируется в среду.

4 mIg вместе с CD79a и CD79b образует рецепторный комплекс В-лимфоцитов (BCR-комплекс).

1От англ. T С ell R eceptor.

1 Вместе с TCR компоненты CD3 образуют рецепторный комплекс Т-лимфоцитов (TCR-

комплекс). Цепи TCR экспрессируются на клеточной мембране только в сочетании с CD3.

1 Средняя вероятность полной MHC(HLA)-идентичности двух произвольно взятых людей приближается к 1 на 1 000 000 (цит. Р.М.Хаитов, Л.П.Алексеев. Физиологическая роль главного комплекса гистосовместимости человека. Иммунология, 2001, № 3, С. 4-12).

1β2-микроглобулин легко сбрасывается с клетки, и его определение в крови и моче использует

ся в диагностике некоторых (прежде всего гематологических) заболеваний.

1Цит. Р.М. Хаитов и соавт. Достижения иммуногенетики – медицине. Иммунология, 1999, № 1, с. 10-17

1 Речь идет не об одновременной презентации, а о потенциальной способности связывать разные

антигенные пептиды.

2661 0

Согласно условиям формирования иммунологического ответа на антигены различной природы его развитие, как отмечено выше, сопровождается обязательной экспрессией молекул главного комплекса гистосовместимости (ГКГ) .

Система ГКГ обеспечивает регуляцию всех форм иммунологического ответа, начиная от распознавания, и в конечном итоге - общий контроль за иммунологическим гомеостазом.

Такой практически универсальный контроль за состоянием системы иммунитета обосновывается особенностями структурной организации системы ГКГ.

Успешное развитие молекулярной биологии и генетики способствовало получению новых данных и пониманию структуры ГКГ, изучение которой началось почти 50 лет назад. Результаты исследования системы главного комплекса гистосовместимости отражены в большом количестве монографий, обзоров, статей. Поэтому далее рассматриваются лишь те основные представления о системе ГКГ, которые необходимы для понимания сущности процесса распознавания опухолевых антигенов .

Известны две основные группы антигенов ГКГ - I и II классов, подавляющее большинство молекул которых могут участвовать в презентации антигена. При выраженных различиях в структуре, особенностях, функциях, генетической организации, локализации в клетке, перераспределении в тканях различных молекул I и II классов главного комплекса гистосовместимости они рассматриваются как своеобразный рецептор для пептидов антигенов различной природы, включая опухолевые.

Антигены первого класса главного комплекса гистосовместимости

Антигены I класса ГКГ в норме экспрессируются практически всеми ядросодержащими клетками (исключение составляют клетки ранних стадий эмбрионального развития). Антигены ГКГ представляют собой универсальные структуры, количество которых колеблется в зависимости от вида ткани и достигает максимума на мембране лимфоцитов всех лимфоидных тканей (лимфатических узлов, селезенки), а также в периферической крови.

Значительно ниже уровень экспрессии антигенов I класса главного комплекса гистосовместимости в клетках печени, почек и эндокринных органов. Особенности тканей и их функциональное состояние, возможность развития той или иной патологии также влияют на уровень экспрессии антигенов I класса ГКГ. Клетки, лишенные антигенов ГКГ, считаются мутантными. Беспрецедентный полиморфизм антигенов главного комплекса гистосовместимости внутри вида обеспечивает уникальность и неповторимость антигенной структуры отдельных индивидуумов одного и того же вида; контроль за этим полиморфизмом осуществляют гены ГКГ.

Необходимо также учитывать, что исходно в нормальных тканях уровень экспрессии антигенов ГКГ I класса различен и зависит от локализации и особенностей тех или иных клеток. Например, на клетках эпителия кишечника, гортани, молочной железы, легких уровень экспрессии антигенов I класса главного комплекса гистосовместимости обычно высокий, на клетках скелетных мышц и слизистой желудка - невысокий, а на клетках центральной нервной системы эти антигены практически не выявляются.

Гетерогенность клеточного состава тех или иных органов или тканей, в свою очередь, определяет и возможные различия в экспрессии антигенов I класса ГКГ различными клетками. Важную роль в этом играют особенности микроокружения, в частности продукция цитокинов, которые по-разному влияют на экспрессию антигенов I класса ГКГ.

Молекулы антигенов I класса ГКГ представлены различными локусами: А, В, С - классические молекулы с выраженным полиморфизмом, а также локусы G, Е и F, известные как неклассические молекулы антигенов I класса главного комплекса гистосовместимости; к неклассическим молекулам относятся и CDId. И классические молекулы антигенов ГКГ I класса, и неклассические антигены локуса G могут находиться в растворимой форме - sHLA-A, sHLA-B, sHLA-C, а также sHLA-G.

Основные структурные особенности антигенов I класса ГКГ таковы. Молекула антигенов этого класса представляет собой интегральный мембранный гликопротеин (гетеродимер с молекулярной массой 45 кД) и состоит из тяжелой ос-цепи, в состав которой входят а1-, а2- и аЗ-домены. Домены а1 и а2 могут непосредственно связываться с опухолевыми пептидами, в то время как а3-домен содержит неполиморфный регион - лиганд для цитотоксических Т-клеток, который взаимодействует с рецептором СD8+-лимфоцитов и гомологичен контактному участку Ig.

Функционирование молекул I класса ГКГ во многом связано с в2-микроглобулином (в2m) , который играет важную роль в особенностях а-цепи и представляет собой растворимую легкую цепь. В литературе все чаще появляются сообщения, авторы которых пытаются найти связь между экспрессией антигенов I класса ГКГ и геном в2m.

Полученные данные разноречивы. Тем не менее постановка этого вопроса имеет серьезное обоснование, базирующееся на таких двух убедительных фактах. Первый - независимо от того, можно ли в настоящее время утверждать наличие связи между снижением экспрессии главного комплекса гистосовместимости и в2m, показано, что опухолевые пептиды могут непосредственно связываться с в2m, образуя комплекс с тяжелой цепью молекулы антигена ГКГ I класса.

В частности, такой способностью обладает HLA-A2-peстриктированный эпитоп, связывающийся с N-концами в2m, который затем распознается цитотоксическими лимфоцитами (ЦТЛ) . Второй - аномалии в экспрессии в2m часто сочетаются с резистентностью к действию ЦТЛ.

Что касается выявления каких-либо корреляций между экспрессией антигенов I класса ГКГ и в2m, то, как уже указывалось, эти данные неоднородны. Исследование большого числа различных опухолей (меланома, рак кишечника, носоглотки и др.) показало, что в подавляющем количестве наблюдений экспрессия антигенов I класса ГКГ уменьшалась.

В одних случаях это сочеталось с мутацией гена в2m, а в других - нет. Из этого следует, что авторы приведенных данных не рассматривают соматические мутации гена в2m как главный механизм снижения уровня антигенов I класса главного комплекса гистосовместимости.

В противоположность такой точке зрения при изучении экспрессии антигенов I класса ГКГ (А, В, С) параллельно с геном в2m другие авторы показали, что уменьшение экспрессии указанных антигенов при первичных карциномах рака молочной железы в 40 % случаев сочеталось и со снижением экспрессии гена в2m по сравнению с этим показателем для нормальных тканей.

Лишь в 12 % появление в2m было сравнимо с нормой; снижение экспрессии в2m не сопровождалось дефектами гена в2m. Исследование молекулярных механизмов уменьшения экспрессии антигенов I класса ГКГ дало основание для заключения, что такое снижение представляет собой феномен, который происходит главным образом на посттранскрипционном уровне и может влиять на экспрессию гена в2m.

Более однозначную трактовку наличия в2m высказывают другие авторы. Так, показано, что в значительном количестве клеток различных линий злокачественных опухолей, включая меланому, рак почки и другие, резко снижен уровень экспрессии антигенов I класса ГКГ и параллельно экспрессия в2m либо ослаблена, либо этот микроглобулин вообще не экспрессируется.

Наконец, нельзя не отметить и данные, согласно которым отсутствие экспрессии или невысокий уровень в2m у мышей некоторых линий сочетается с дефектом созревания СD4-СD8+Т-лимфоцитов, экспрессирующих TCR и дефектом цитотоксичности Т-лимфоцитов. Из этих данных следует, что экспрессия молекул I класса главного комплекса гистосовместимости играет ключевую роль в положительной селекции Т-клеток, в частности тех из них, которые в период тимического созревания экспрессируют а- и в-цепи TCR.

Несмотря на указанную противоречивость данных, изучение в2m, его исследование при карциноме носоглотки показало достоверное повышение уровня этого белка с различиями на отдельных этапах процесса, при распространении опухоли и метастазах. Повышение уровня в2m наиболее часто наблюдалось при низкодифференцированных формах этой опухоли, однако, по мнению авторов исследований, диагностическая значимость этого маркера низкая.

Приведенные данные, несмотря на их некоторую разноречивость, свидетельствуют о том, что экспрессия в2m в злокачественно трансформированных клетках в значительном количестве случаев ассоциируется с дефектами распознавания и снижением цитотоксичности, что объясняет заслуженный интерес к изучению роли в2m в процессе распознавания опухолевых антигенов.

Весьма вероятно, что дальнейшие исследования в этом направлении могут послужить базой не только для прогнозирования течения опухолевого процесса, но и для подходов к регуляции индукции иммунологического ответа. Схематически структура классических антигенов I класса ГКГ представлена на рис. 4.

Рис. 4. Схематическая структура антигенов гистосовместимости I класса

Стремление к выяснению механизмов снижения экспрессии антигенов I класса ГКГ не ограничивается поисками связи с мутациями гена в2m. В частности, показано, что это может быть обусловлено потерей гетерозиготности (loss of heterozigosity - LOH) на 6p21 хромосоме.

Этот механизм приводит к необратимому снижению уровня HLA-гаплотипа в различных опухолях и, несмотря на недостаточную изученность, может быть серьезным препятствием для терапевтического эффекта при иммунизации опухолевыми антигенами. Уменьшение гетерозиготности было обнаружено в образцах, полученных из опухолей носоглотки, кишечника, меланомы, что позволило авторам на основании большого исследованного материала разделить опухоли на LOH-негативные и LOH-позитивные для выявления больных, которых можно рассматривать как перспективных для иммунотерапии.

Белки-транспортеры

Для реализации процесса распознавания антигены I класса ГКГ в комплексе с опухолевыми пептидами должны быть доставлены на поверхность опухолевой клетки. Транспорт этого комплекса, как правило, может быть осуществлен только при наличии белков-транспортеров - ТАР (transporter antigene proteines).

ТАР представляет собой гетеродимер, относящийся к субсемейству трансмембранных транспортеров, синтезируется в цитозоле, где связан с комплексом, включающим и а-цепи главного комплекса гистосовместимости, опухолевого пептида, в2m и транспортирует этот комплекс в эндоплазматический ретикулум, где и происходит процессинг. В настоящее время известны две субъединицы этого белка - ТАР-1 и ТАР-2.

Значение ТАР-1 и ТАР-2 в процессе распознавания не ограничивается транспортом указанного комплекса, так как наряду с этим они обеспечивают и организацию молекул ГКГ. Регуляция активности белков-транспортеров осуществляется факторами PSF1 и PSF2 (peptide suppy factors).

Молекула ГКГ I класса взаимодействует с белком-транспортером благодаря молекуле, известной как тапазин, которая кодируется геном, связанным с ГКГ. Экспрессия тапазина в ряде случаев может корректировать дефекты распознавания ЦТЛ, что свидетельствует о важной роли этого белка в HLA-l-рестриктированном распознавании.

Образовавшийся в последующем указанный выше тример из цитозоля через аппарат Гольджи транспортируется на поверхность опухолевой клетки и презентирует соответствующие эпитопы рецепторам СD8+Т-лимфоцитов. Рис. 5 иллюстрирует участие транспортных белков в перемещении комплекса антигены главного комплекса гистосовместимости - антигены опухоли.


Рис. 5. Участие транспортных белков в перемещении комплекса антигены ГКГ- антигены опухоли:
ТАР - белки-транспортеры опухолевых пептидов, TCR - рецептор Т-лимфоцитов

В плане общих представлений о функционировании ТАР имеют значение также данные, полученные в последнее время при исследовании клеток меланомы. Из них следует, что появление точечных мутаций в генах, кодирующих антигены I класса ГКГ нарушает транспортную способность ТАР, что может препятствовать распознаванию цитотоксическими лимфоцитами и рассматривается как еще одна причина ускользания опухоли из-под иммунологического контроля.

Эффективность презентации антигенов в комплексе с молекулами I класса ГКГ ЦТЛ зависит не только от наличия экспрессии ТАР, но и от их функциональной активности. Молекулярные механизмы нарушения функциональной активности ТАР изучены недостаточно. Однако в настоящее время уже есть сведения о некоторых механизмах нарушения экспрессии и функциональной активности ТАР.

Предполагается, что такие нарушения могут быть обусловлены транслокацией и точечными мутациями в генах, кодирующих эти белки, что ведет к потере способности клетки презентировать антигены I класса главного комплекса гистосовместимости. Поэтому есть все основания полагать, что дефект этой системы можно считать одним из центральных в изменении экспрессии антигенов I класса ГКГ.

Подтверждением этому служат результаты исследования клеток линии немелкоклеточной карциномы легкого, когда точечные мутации, сочетающиеся с нарушениями функции ТАР, были обнаружены в аденозинтрифосфатсвязывающем участке этого белка. Не исключается также возможность наличия ингибиторов активности ТАР.

Последнее предположение основано на том, что белок простого вируса герпеса ICP47 блокирует траспорт ТАР. В этой связи нельзя исключить и существование других ингибиторов активности ТАР как вирусного, так и другого происхождения.

Следует обратить внимание также на неодинаковую степень значимости экспрессии ТАР в клетках высоко- и низкоиммуногенных опухолей. Так, изучение презентации пептидов вирусиндуцированных опухолей мышей линии С57В1/6 показало, что эффективность презентации пептида слабоиммуногенными опухолями четко зависит от экспрессии ТАР, в то время как выраженной зависимости от презентации пептидов высокоиммуногенными опухолями не прослеживается.

Факт ТАР-независимого распознавания нуждался в объяснении, возможность которого появилась лишь в самое последнее время благодаря работам Т. Fiedler и сотрудников.

Им удалось получить данные, согласно которым в случаях дефекта ТАР презентация опухолевых антигенов с участием молекул CDld остается неизмененной. В связи с этими данными авторы считают возможным рассматривать презентацию с участием CDld как дополнительный механизм распознавания.

Стали известны и молекулярные механизмы снижения функциональной активности ТАР человека и мышей, выявлены также структуры, которые обеспечивают активность этих белков-транспортеров. В частности, при изучении аминокислотной последовательности ТАР было установлено, что наличие глютаминовой кислоты в позиции 263 (Glu-263) обеспечивает их транспортную функцию.

Снижение функциональной активности может быть также связано с нарушением стабильности гена мРНК, ответственного за презентацию антигена, что нередко сочетается и с уменьшением экспрессии антигенов I класса ГКГ.

Изменение функциональной активности транспортных белков может приводить к нарушению процессинга антигенов. Об этом свидетельствует недавно установленный факт, полученный при исследовании карциномы почки; степень выраженности таких дефектов в клетках отдельных линий карциномы почки отличалась большой вариабельностью.

Важно отметить, что частота обнаружения дефектов ТАР в различных опухолях неодинакова. Если они достаточно часто выявляются при меланомах, карциноме почки, то при раке легкого и карциномах кишечника снижение активности ТАР либо не наблюдалось, либо было слабо выраженным.

Данные о неодинаковом уровне повреждений функциональной активности ТАР в различных опухолях представляются важными не только потому, что еще раз иллюстрируют биологические особенности опухолевых клеток, но и ориентируют на поиск механизмов, повреждение которых также может способствовать нарушению представления опухолевых антигенов.

Важная роль экспрессии ТАР и должный уровень их функциональной активности для процесса распознавания опухолевых антигенов делает понятным, почему недостаточность этих транспортных белков очень существенно влияет на индукцию иммунологического ответа на данные антигены.

Уже появились сведения о том, что снижение уровня экспрессии ТАР может быть использовано и для оценки клинических особенностей течения опухолевого процесса, в частности его прогноза. Такие данные, например, были получены при изучении клеток меланомы, когда было отмечено, что прогрессирующее течение меланомы и ускользание ее от распознавания ЦТЛ сочеталось со снижением уровня экспрессии ТАР.

Параллельные исследования ТАР-1, ТАР-2, LMP-2, LMP-7, антигенов I класса ГКГ и в2m показали, что не только изменения ТАР-1, а, возможно, и ТАР-2, могут быть независимыми прогностическими маркерами при росте первичных меланом.

Белки вируса Эпштейна-Барр

Наряду с белками-транспортерами - важными компонентами распознавания большое значение имеет еще одна группа белков вирусного происхождения. Речь идет о белках вируса Эпштейна-Барр - LMP (large multifunctional protease), которые принадлежат к новому классу регуляторов и представляют собой субъединицу 20S протеосомы. В настоящее время известны несколько субъединиц этого белка - LMP-1, LMP-2A, LMP-2B, LMP-7, LMP-10 с различной молекулярной массой; идентифицированы 9 генов, кодирующих эти белки.

Экспрессия белков LMP выявлена в различных опухолях: назофарингальной карциноме, раке желудка и других злокачественных опухолях эпителиального происхождения, лимфогранулематозе, лимфоме Беркитта и др. Имеются наблюдения, что LMP-2 чаще других белков этого семейства, например LMP-7, экспрессируются клетками как первичных опухолей, так и метастазов.

Понимание роли LMP следует из особенностей тех процессов, в которых они участвуют. В этом плане достаточно изучены субъединицы LMP-2A и LMP-2B, которые имеют сходную молекулярную организацию. Белок LMP-2A связан с тирозиновыми киназами семейства src и является для них субстратом, а тирозинфосфорилирование LMP-2A индуцирует процесс адгезии к белку экстрацеллюлярного матрикса - ЕСМ (extra cellular matrix).

Наряду с перечисленными белками, участие которых обязательно практически во всех случаях распознавания, в этом процессе могут принимать участие и другие белки - MECL-1, РА28-а, РА28-в, тапазин и др., которые регулируются генами, сцепленными с генами, контролируюшими презентацию антигена.

Исходя из этого постулируется, что HLA-I-дефицитный фенотип опухоли, например меланомы, связан с уменьшением количества множества компонентов, среди которых прежде всего следует отметить ТАР, LMP, РА28-а или РА28-в, в то время как экспрессия других компонентов, таких, как калретикулин, ER60, белок дисульфидизомераза, калнексин либо вообще не изменена, либо снижена.

Дефекты ТАР и LMP чаще наблюдаются в клетках метастазов, чем первичных опухолей, что может быть обусловлено большей генетической нестабильностью этих клеток. В результате создаются условия для селекции клона опухолевых клеток, способных ускользать от распознавания, рестриктированного молекулами I класса главного комплекса гистосовместимости.

Исследование молекулярных механизмов процесса распознавания не ограничивается пониманием его сущности. Так, при изучении меланомы получены данные, согласно которым определение ТАР и LMP может иметь и клиническое значение.

Результаты параллельного исследования LMP-2, LMP-7, ТАР-1, ТАР-2, антигенов I класса ГКГ и в2m в клетках меланомы различной плотности свидетельствуют о том, что:

1) экспрессия указанных маркеров не коррелировала с плотностью опухоли;
2) уменьшение количества LMP и ТАР во многих случаях сочеталось с ослаблением экспрессии молекул ГКГ;
3) снижение уровня экспрессии ТАР-1 и ТАР-2 коррелировало с наличием метастазов.

Еще одним примером неблагоприятного сочетания снижения уровня экспрессии молекул ГКГ, белков-транспортеров и опухолевых антигенов служат следующие данные. Оказалось, что уменьшение экспрессии антигена меланомы MART-1/Melan-A, ТАР и молекул главного комплекса гистосовместимости I класса в клетках больных меланомой приводило в последующем к летальному исходу; иммунотерапия была неэффективной. Это объясняет, почему в настоящее время предпринимаются попытки использования результатов определения экспрессии белков ТАР и LMP в клинике.

Однако несмотря на бесспорную значимость белков ТАР и LM Р в процессе распознавания, имеются наблюдения, которые иллюстрируют возможность исключений. Как неоднократно отмечалось, снижение экспрессии ТАР, как правило, связано с уменьшением экспрессии антигенов I класса ГКГ.

Наряду с этим известны случаи, когда такой параллелизм отсутствует, что подтверждают результаты изучения клеток двух линий карциномы носоглотки человека. В клетках обеих линий уменьшалась экспрессия LMP-2, ТАР-1, ТАР-2, LMP-7, молекул аллелей HLA-B.

В клетках одной из линий - HSC5, несмотря на выраженное снижение уровня ТАР отмечена экспрессия молекул HLA-A2, что свидетельствует о возможности транспортировки антигенов ГКГ без участия ТАР.

Весьма вероятно, что такая возможность зависит от ряда еще не известных особенностей внутриклеточных процессов, происходящих в той или иной опухолевой клетке. Поэтому существование даже единичных случаев транспортировки комплексов опухолевых пептидов и молекул ГКГ при отсутствии ТАР ставит перед исследователями задачу выяснения, при каких условиях осуществляется распознавание.

Таким образом, можно констатировать, что ТАР и LMP - необходимые компоненты эффективного процесса распознавания опухолевых антигенов. Снижение уровня экспрессии этих белков и их функциональной активности - одна из главных причин ухода опухоли из-под иммунологического контроля. Уменьшение их экспрессии нередко ассоциируется со снижением чувствительности не только к лизису цитотоксическими лимфоцитами, но и к естественным киллерам.

Ключевая роль ТАР и LMP в распознавании обосновывает целесообразность еще одного несомненно перспективного подхода в общей стратегии иммунотерапии - повышение уровня экспрессии указанных белков различными путями: трансфекцией соответствующих генов, действием цитокинов, усиливающих их экспрессию, в частности IFNy и др.

Антигены, рестриктированные молекулами I класса главного комплекса гистосовместимости, могут быть представлены различными путями. Прямая презентация - деградация цитолитических белков с участием протеосом, транспортом пептидов через мембрану эндоплазматического ретикулума и последующей экспрессией комплекса молекула ГКГ - эпитопы антигена опухоли на поверхность опухолевой клетки.

Перекрестная презентация включает внутриклеточный процессинг опухолевых антигенов антигенпрезентирующими клетками. Как известно, прямая презентация, как правило, направлена на представление антигена СD8+Т-лимфоцитов, а перекрестная - СD4+Т-лимфоцитов. При этом показано, что перекрестная презентация необходима и для индукции клеток памяти CD8+, однако остается неясным, способна ли такая презентация влиять на цитотоксичность последних.

Для ответа на этот вопрос были проведены опыты с индукцией прямой и перекрестной презентации при использовании мутантных антигенов I класса ГКГ, не способных осуществлять презентацию даже нормальных антигенов этого класса.

Результаты исследований показали, что первые индуцируют очень слабую цитотоксичность ЦТЛ, а оптимальная индукция цитотоксичности, но не клеток памяти ЦТЛ, осуществляется при прямой презентации антигена опухолевыми клетками.

Антигены локуса G

Как уже указывалось, в структуру антигенов I класса ГКГ наряду с локусами А, В, С входят и другие локусы, в частности G, Е и F, которые, в отличие от антигенов локусов А, В, С, характеризуются ограниченным полиморфизмом и поэтому называются неклассическими молекулами. Они отличаются от классических не только ограниченным полиморфизмом, но и особенностями транскрипции, экспрессии и иммунологическими функциями.

Антигены локуса G (не принимающие участия в классическом распознавании) экспрессируются трофобластами, на поверхности которых обычно отсутствуют антигены других локусов главного комплекса гистосовместимости. Физиологическая роль HLA-G в этих случаях заключается в ограничении роста клеток, включая трофобласты, благодаря чему эти антигены играют важную роль в установлении толерантности плода к иммунологической системе матери.

Интерес к выявлению антигенов локуса G на опухолевых клетках возник сравнительно недавно и большой вклад в понимание значения экспрессии HLA-G внесли P. Paul и сотрудники. Стало известно, что HLA-G может находиться в мембранносвязанной и растворимой формах, что определяет наличие его различных изоформ: HLA-G1, HLA-G2, HLA-G3, HLA-G4 - изоформы, связанные с мембраной, HLA-G5, HLA-G6, HLA-G7 - растворимые изоформы; некоторые из них обнаруживаются как в супернатантах культивируемых клеток, так и в различных жидкостях организма.

Естественно, что сравнительная новизна этого вопроса оставляет неясными многие детали, касающиеся оценки значения экспрессии антигенов локуса G. Тем не менее, несмотря на некоторую неоднозначность такой оценки, полученные результаты позволяют достаточно определенно установить важность экспрессии молекул HLA-G опухолевыми клетками и могут быть использованы для понимания процессов лизиса цитотоксическими клетками.

Последнее объясняется, в основном, тем, что взаимодействие с HLA-G приводит к ингибиции лизиса опухолевых клеток, формированию толерантности, что можно рассматривать как благоприятные условия для ухода опухоли из-под иммунологического контроля. Возможный уход от лизиса опухолевых клеток, которые экспрессируют HLA-G, очевидно, связан с ингибицией рецепторов, ответственных за цитотоксичность.

В последнее время стали известны несколько типов таких ингибиторных рецепторов, впервые один из них был описан в начале 90-х годов. Более подробные сведения об ингибиторных рецепторах будут изложены ниже.

Стало известно, что ингибиторные рецепторы взаимодействуют с молекулами HLA-G и таким образом способствуют уходу опухоли из-под иммунологического контроля. Возможность этого усиливается и тем обстоятельством, что ингибиторные рецепторы экспрессируются на различных цитотоксических лимфоцитах: Т-лимфоцитах, естественных киллерах и естественных киллерных Т-лимфоцитах.

О неоднозначности трактовок значения экспрессии антигенов HLA-G для процесса распознавания свидетельствуют также результаты изучения значительного количества образцов различных опухолевых тканей и клеток многих опухолевых линий с целью выявления экспрессии антигенов А, В, С, а также G и его изоформы - G1.

Результаты этих исследований показали, что в небольшом числе случаев наблюдается транскрипция мРНК антигенов локуса G при отсутствии экспрессии его изоформы - G1. Итогом этих исследований было заключение, что антигены HLA-G, и в частности его изоформа G1, либо не играют роли в осуществлении ингибиторного сигнала киллерных клеток, либо эта роль ничтожно мала.

К аналогичным выводам при изучении экспрессии HLA-G клетками меланомы пришли и другие исследователи. Было установлено, что клетки меланомы экспрессировали этот антиген только de novo, что дало основание рассматривать экспрессию локуса HLA-G на клетках меланомы не как закономерную. Эти же исследователи показали, что IFNy не влияет на экспрессию антигенов HLA-G и поэтому терапия данным цитокином не способствует уходу опухоли от лизиса.

Несмотря на то, что авторы указанных исследований не дают окончательной оценки значения экспрессии HLA-G, они не исключают, что экспрессия этих антигенов может препятствовать развитию тех проявлений противоопухолевого иммунитета, которые способствуют опухолевой прогрессии.

Такое заключение было сделано при исследовании клеток меланомы, на которых был установлен высокий уровень сплайсинга HLA-G-транскрипции, сочетающийся с прогрессированием опухолевого роста.

Молекулы HLA-G могут экспрессироваться на активированных макрофагах и дендритных клетках, инфильтрирующих карциному легкого, а также легочную ткань при других патологических процессах.

Предполагается, что экспрессия HLA-G этими клетками может препятствовать презентации антигена и благоприятна для прогрессии как злокачественного роста, так и воспалительных процессов.

Некоторые авторы склонны рассматривать экспрессию HLA-G как фактор ускользания опухоли из-под иммунологического контроля даже в тех случаях, когда проведенные исследования не дают прямых доказательств для такого заключения. Например, при исследовании клеток (свежевыделенных и клеток различных линий) гепатомы, меланомы, карцином не выявлено экспрессии антигенов HLA-G.

Отмечено также, что опухоли не были инфильтрированы естественными киллерами и лизис опухолевых клеток не наблюдался. Тем не менее авторы не исключают возможной роли антигенов ГКГ локуса HLA-G в процессе ускользания опухоли от иммунологического контроля. Установлено, что HLA-G-молекулы в большем количестве случаев экспрессируются макрофагами и ДК, инфильтрирующими карциному легкого, чем при незлокачественных заболеваниях.

По мере изучения роли экспрессии HLA-G сомнения относительно ее значения уменьшались, и в настоящее время есть основания считать, что экспрессия HLA-G может:

1) быть дополнительным механизмом ускользания опухоли от иммунологического контроля;
2) вызывать иммунологическую толерантность;
3) ингибировать цитотоксичность киллерных клеток.

Если же учесть, что HLA-G может ингибировать лизис различными киллерными клетками, то спектр возможных негативных влияний экспрессии этих молекул значительно расширяется.

К неклассическим антигенам системы ГКГ относятся и молекулы локуса Е - HLA-E. Эти молекулы характеризуются ограниченным полиморфизмом и с высокой специфичностью связывают пептид 1а, который происходит из полиморфных классических молекул А, В, С и стабилизирует белки ГКГ, способствуя их продвижению к клеточной мембране.

Исследование кристаллической структуры HLA-E показало, что он обладает способностью связываться с пептидами la HLA-1 при участии белков-транспортеров (ТАР-зависимым путем), может взаимодействовать с рецепторами естественных киллеров, ингибируя их лизис. Специфичность связывания молекул локуса Е с 1а определяется внутренними свойствами молекулы HLA-E.

Подобно молекулам антигена HLA-G, молекулы антигенов HLA-E также выявляются на трофобластах, тормозят активность естественных киллеров и рассматриваются как компонент защиты от распознавания материнскими цитотоксическими лимфоцитами; при определенных условиях антигены HLA-E могут активировать естественные киллеры.

Если в эндоплазматическом ретикулуме нет основного пептида, то молекулы локуса Е теряют стабильность и деградируют еще до достижения поверхности клетки. Если в клетках происходят изменения (в результате попадания инфекции, злокачественной трансформации), снижается экспрессия А, В, С или ингибируется активность ТАР, молекулы локуса Е также могут не достигать поверхности.

Молекулярные механизмы определения функции антигенов локуса Е подлежат дальнейшему изучению. Однако при наличии ряда невыясненных вопросов есть данные о строгой зависимости между экспрессией антигенов локуса Е и ко-экспрессией в2m.

Как отмечалось, описан еще один локус молекул антигенов I класса главного комплекса гистосовместимости - локус F. Информация об этом локусе очень ограничена, а сравнительное исследование экспрессии антигенов локуса F у обезьян и человека показало, что он выявляется только у человека. Данных о роли молекул локуса F в распознавании опухолевых антигенов нет.

Заканчивая изложение данных о классических и неклассических молекулах, нельзя обойти вниманием и недавно полученные факты, что растворимые формы как классических, так и неклассических молекул, в частности HLA-G, могут индуцировать апоптоз активированных СD8+Т-лимфоцитов.

Изучение этой апоптозиндуцирующей способности в отношении активированных СD8+Т-лимфоцитов показало, что их связывание с растворимыми формами как классических, так и неклассических антигенов приводит к усилению Fas/FasL-взаимодействия, секреции растворимой формы FasL СD8+Т-лимфоцитами, что сопровождается ингибицией цитотоксичности этих клеток.

Авторы предполагают, что растворимые формы указанных антигенов выполняют иммунорегуляторную роль в различных условиях, включая и ряд заболеваний, который характеризуется активацией клеток системы иммунитета и повышением уровня sHLA-A, sHLA-B, sHLA-C, sHLA-G в сыворотке крови.

Для понимания значения экспрессии антигенов I класса ГКГ важен факт, согласно которому уровень экспрессии антигенов ГКГ по-разному влияет на индукцию цитотоксичности различных киллерных клеток. Так, для оптимального лизиса опухолевых клеток ЦТЛ необходим высокий уровень антигенов I класса ГКГ, в то время как эффективный лизис другими киллерными клетками, в частности естественными киллерами, может осуществляться и при низком уровне указанных антигенов главного комплекса гистосовместимости, что показано в опытах с аденокарциномой кишечника мышей.

Изменения экспрессии антигенов ГКГ

Изменения экспрессии антигенов ГКГ (преимущественно снижение) выявлены при многих предопухолевых состояниях, что особенно отчетливо проявляется у антигенов I класса ГКГ. Причины этого снижения могут быть различны: мутации соответствующих генов, контролирующих экспрессию антигенов I класса ГКГ, нарушение регуляции презентации антигенов с участием антигенов I класса ГКГ, ингибиция гликолизирования или транспорта молекул I класса главного комплекса гистосовместимости, мутации в ТАР-генах, мутации или перераспределение в в2m, изменение в структуре хроматина антигенов I класса ГКГ, экспрессия онкогенов и снижение уровня экспрессии молекул ГКГ под влиянием вирусов и др.

Достаточное количество данных показывает, что снижение уровня экспрессии антигенов I класса ГКГ часто наблюдается при таких предопухолевых патологиях, какдисплазии, кандиломы, папилломы. Однако это наблюдается не при всех предопухолевых состояниях. Например, при кондиломах, раке шейки матки, молочной железы, гортани и наличии соответствующих генетических и морфологических изменений экспрессия антигенов главного комплекса гистосовместимости I класса не нарушена.

Более того, в некоторых случаях, например, при аденомах кишечника, которые, как известно, характеризуются аккумуляцией таких онкогенов, как k-ras, экспрессия антигенов гистосовместимости не изменена. Наличие экспрессии антигенов I класса ГКГ во многих случаях сочетается с благоприятным прогнозом, например при раке молочной железы, гортани и др.

Различные дисплазии, которые сопровождаются снижением экспрессии антигенов I класса ГКГ, в частности с локализацией в шейке матки, органах дыхательного и желудочного тракта, нередко сочетаются с уменьшением экспрессии адгезивных молекул, важных для межклеточных взаимодействий при формировании противоопухолевого иммунитета.

Общее представление о динамике экспрессии антигенов I класса ГКГ на нормальных клетках, при предопухолевых состояниях, а также злокачественно трансформированных клетках различных органов дает схема 1.


Схема 1. Экспрессия антигенов I класса главного комплекса гистосовместимости в динамике формирования злокачественного фенотипа

Уровень экспрессии антигенов ГКГ I класса снижается значительнее по мере развития опухолевого процесса, о чем свидетельствуют многие наблюдения. Нередко уменьшение количества этих антигенов ассоциируется с ускользанием опухоли из-под иммунологического контроля, ранним метастазированием, дессиминацией процесса, что отмечено при меланомах, раке носоглотки, кишечника.

Это объясняет, почему во многих случаях наблюдается параллелизм между нарушениями в генах, кодирующих экспрессию антигенов ГКГ, особенностями течения опухолевого процесса и эффективностью иммунотерапии, точкой приложения которой являются Т-лимфоциты. Такое заключение подтверждают наблюдения, согласно которым увеличение частоты нарушения экспрессии антигенов I класса ГКГ может сочетаться либо с отсутствием эффекта иммунотерапии, либо быстрым рецидиви-рованием заболевания.

Эти наблюдения свидетельствуют о возможности того, что в основе усиления и распространения опухоли лежит селекция опухолевых клеток, которые приобретают способность ускользать от иммунологического распознавания в связи с нарушениями экспрессии антигенов главного комплекса гистосовместимости.

Различный характер уменьшения экспрессии антигенов отдельных локусов ГКГ I класса демонстрируют исследования, проведенные с клетками инвазивного рака прямой кишки. Исследования показали, во-первых, общую высокую частоту снижения экспрессии этих антигенов (до 40 %) и высокую частоту их повреждения (до 73 %), во-вторых, выявлены локус-специфические различия в повреждении: HLA-А и HLA-B - соответственно в 9 и 8 %, параллельное повреждение HLA-A и HLA-B - в 2 % и не отмечено изменений в экспрессии HLA-C-локуса.

Высокую частоту нарушения экспрессии антигенов I класса ГКГ при инвазивном раке прямой кишки авторы рассматривают как благоприятное условие для ускользания опухоли из-под иммунологического контроля.

Снижение уровня антигенов I класса ГКГ может быть различным - полным, локусспецифическим или аллелеспецифическим. Обнаружено, что во многих случаях уменьшение экспрессии антигенов I класса связано с формированием резистентности опухолевых клеток к лизису киллерными клетками.

Несмотря на то, что снижение уровня экспрессии антигенов I класса главного комплекса гистосовместимости опухолевыми клетками различного гистогенеза и локализации наблюдается в подавляющем большинстве случаев, возможны и исключения - экспрессия не уменьшается, а в отдельных случаях уровень экспрессии повышается.

Тем не менее обращает на себя внимание такой важный факт: в ряде случаев при отсутствии изменений в экспрессии молекул антигенов ГКГ либо даже при ее усилении противоопухолевая иммунологическая защита не формируется.

Такая нестандартная ситуация вызывает естественный вопрос: почему при незначительном снижении уровня экспрессии антигенов ГКГ, отсутствии изменений и даже усилении экспрессии противоопухолевый иммунологический ответ все-таки не развивается?

Причины этого могут быть различны и будут рассмотрены в последующих разделах. Однако очень важно иметь в виду, что отсутствие формирования противоопухолевого иммунитета еще не означает, что процесс распознавания не произошел. К сожалению, есть убедительные доказательства того, что в некоторых случаях процесс распознавания приводит к индукции другой формы иммунологического ответа - толерантности.

При том что, как правило, для представления антигенов опухоли необходимы экспрессия антигенов ГКГ и процессинг опухолевых антигенов имеются наблюдения, согласно которым ослабление процессинга и экспрессии антигенов I класса главного комплекса гистосовместимости не всегда служит препятствием для лизиса опухолевых клеток соответствующими лимфоцитами.

Такие данные получены при исследовании клеток нейробластомы с очень незначительным уровнем экспрессии антигенов I класса ГКГ. Однако даже этого уровня оказалось достаточно для распознавания при условии, что опухолевые клетки были инфицированы вирусом гриппа.

Такая чувствительность клеток нейробластомы к действию киллерных лимфоцитов позволяет характеризовать ее как опухоль, чувствительную к иммунотерапии. При всем интересе к этим данным возникают вопросы, на которые сегодня еще нет ответов.

Например, можно ли проводить параллель между такими условиями лизиса опухолевых клеток и возможностью лизиса неинфицированных опухолевых клеток со сниженной экспрессией антигенов I класса ГКГ? Можно ли определить минимальный порог экспрессии антигенов ГКГ, который вызывает индукцию иммунологического ответа?

При исследовании частоты изменения экспрессии антигенов различных локусов главного комплекса гистосовместимости I класса показано, что наиболее часто наблюдается уменьшение количества молекул HLA-A, а затем HLA-B; реже имеет место параллельное снижение экспрессии антигенов двух или трех локусов.

Обобщая результаты изучения экспрессии антигенов I класса ГКГ с учетом их клинического значения представляется возможным отметить следующее:

1. Существует достоверная отрицательная корреляция между снижением экспрессии антигенов I класса ГКГ и опухолевой прогрессией при многих опухолях - первичной карциноме молочной железы, раке кишечника, шейки матки, ротовой полости и гортани, мочевого пузыря, меланоме.

При этой выраженной общей закономерности известны единичные исключения, которые проявляются не только в усилении экспрессии антигенов I класса ГКГ, но даже в появлении этих антигенов на тех клетках, которые до этого их не экспрессировали, что наблюдалось при некоторых опухолях мышечной ткани, в частности при рабдомиосаркоме.

2. Резкое снижение уровня экспрессии антигенов I класса часто совпадает с ранним метастазированием, что особенно характерно для клеток меланомы, у которых, как правило, наблюдается выраженный дефицит экспрессии антигенов I класса главного комплекса гистосовместимости.

3. Существует корреляция между степенью дифференцировки опухолевых клеток и уровнем экспрессии антигенов I класса ГКГ - степень дифференцировки уменьшается по мере снижения уровня экспрессии.

Эти данные подтверждены при параллельном изучении экспрессии различных локусов ГКГ и данных гистологических исследований, которые показали, что наиболее слабая экспрессия антигенов I класса ГКГ сочеталась с низкой дифференцировкой опухолевых клеток, их выраженной инвазивностью и большой метастатической активностью, что особенно отчетливо проявилось при изучении клеток рака носоглотки.

4. Интенсивность снижения экспрессии антигенов I класса главного комплекса гистосовместимости варьирует в зависимости от локализации опухоли и исходного уровня экспрессии этих антигенов: клетки скелетных мышц и слизистой оболочки желудка могут быть отнесены к клеткам, слабо экспрессирующим антигены I класса ГКГ, а клетки центральной нервной системы практически их не экспрессируют.

5. Нередко снижение уровня экспрессии антигенов ГКГ ассоциируется со слабой иммуногенностью опухолевых клеток.

6. При многих опухолях человека, особенно при меланоме, уровень экспрессии ТАР-1 и ТАР-2 уменьшался также LMP, что обусловлено либо их структурными повреждениями, либо дисрегуляцией и ассоциируется с быстрым метастазированием.

7. Снижение уровня экспрессии антигенов главного комплекса гистосовместимости с полным основанием считают одной из важнейших причин ускользания опухоли из-под иммунологического контроля.

8. Принципиально важна необходимость учета особенностей экспрессии антигенов I класса ГКГ до начала иммунотерапии , что, по мнению многих авторов, может существенно предопределить ее эффективность, в частности вакцинации опухолевыми пептидами.

Бережная Н.М., Чехун В.Ф.