Химический состав и структурная организация молекулы днк. Строение и особенности молекулы ДНК. Структуры молекулы Строение и состав днк

Молекула ДНК состоит из двух нитей, образующих двойную спираль. Впервые ее структура была расшифрована Френсисом Криком и Джеймсом Уотсоном в 1953 году.

Поначалу молекула ДНК, состоящая из пары нуклеотидных, закрученных друг вокруг друга цепочек, порождала вопросы о том, почему именно такую форму она имеет. Ученые назвали этот феномен комплементарностью, что означает, что в ее нитях друг напротив друга могут находиться исключительно определенные нуклеотиды. К примеру, напротив тимина всегда стоит аденин, а напротив цитозина - гуанин. Эти нуклеотиды молекулы ДНК и называются комплементарными.

Схематически это изображается так:

Т — А

Ц — Г

Данные пары образуют химическую нуклеотидную связь, которая определяет порядок расстановки аминокислот. В первом случае она немного слабее. Связь между Ц и Г более прочная. Некомплементарные нуклеотиды между собой пары не образуют.


О строении

Итак, строение молекулы ДНК особое. Такую форму она имеет неспроста: дело в том, что количество нуклеотидов очень большое, и для размещения длинных цепочек необходимо много места. Именно по этой причине цепочкам присуще спиральное закручивание. Это явление названо спирализацией, оно позволяет нитям укорачиваться где-то в пять-шесть раз.

Некоторые молекулы такого плана организм использует очень активно, другие - редко. Последние, помимо спирализации, подвергаются еще и такой «компактной упаковке», как суперспирализация. И тогда длина молекулы ДНК уменьшается в 25-30 раз.

Что такое «упаковка» молекулы?

В процессе суперспирализации задействуются гистоновые белки. Они имеют структуру и вид катушки для ниток или стержня. На них и наматываются спирализованные нити, которые становятся сразу «компактно упакованными» и занимают мало места. Когда возникает необходимость использования той или иной нити, она сматывается с катушки, к примеру, гистонового белка, и спираль раскручивается в две параллельные цепочки. Когда молекула ДНК пребывает именно в таком состоянии, с нее можно считывать необходимые генетические данные. Однако есть одно условие. Получение информации возможно, только если структура молекулы ДНК имеет раскрученный вид. Хромосомы, доступные для считывания, называются эухроматинами, а если они суперсипирализованы, то это уже гетерохроматины.

Нуклеиновые кислоты

Нуклеиновые кислоты, как и белки, являются биополимерами. Главная функция - это хранение, реализация и передача наследственной (генетической информации). Они бывают двух типов: ДНК и РНК (дезоксирибонуклеиновые и рибонуклеиновые). Мономерами в них выступают нуклеотиды, каждый из которых имеет в своем составе остаток фосфорной кислоты, пятиуглеродный сахар (дезоксирибоза/рибоза) и азотистое основание. В ДНК код входит 4 вида нуклеотидов - аденин (А)/ гуанин (Г)/ цитозин (Ц)/ тимин (Т). Они отличаются по содержащемуся в их составе азотистому основанию.

В молекуле ДНК количество нуклеотидов может быть огромным - от нескольких тысяч до десятков и сотен миллионов. Рассмотреть такие гигантские молекулы можно через электронный микроскоп. В этом случае удастся увидеть двойную цепь из полинуклеотидных нитей, которые соединены между собой водородными связями азотистых оснований нуклеотидов.

Исследования

В ходе исследований ученые обнаружили, что виды молекул ДНК у разных живых организмов отличаются. Также было установлено, что гуанин одной цепи может связываться только лишь с цитозином, а тимин - с аденином. Расположение нуклеотидов одной цепи строго соответствует параллельной. Благодаря такой комплементарности полинуклеотидов молекула ДНК способна к удвоению и самовоспроизведению. Но сначала комплементарные цепи под воздействием специальных ферментов, разрушающих парные нуклеотиды, расходятся, а затем в каждой из них начинается синтез недостающей цепи. Это происходит за счет имеющихся в большом количестве в каждой клетке свободных нуклеотидов. В результате этого вместо «материнской молекулы» формируются две «дочерние», идентичные по составу и структуре, и ДНК-код становится исходным. Данный процесс является предшественником клеточного деления. Он обеспечивает передачу всех наследственных данных от материнских клеток дочерним, а также всем последующим поколениям.

Как читается генный код?

Сегодня вычисляется не только масса молекулы ДНК - можно узнать и более сложные, ранее не доступные ученым данные. Например, можно прочитать информацию о том, как организм использует собственную клетку. Конечно, сначала сведения эти находятся в закодированном виде и имеют вид некой матрицы, а потому ее необходимо транспортировать на специальный носитель, коим выступает РНК. Рибонуклеиновой кислоте под силу просачиваться в клетку через мембрану ядра и уже внутри считывать закодированную информацию. Таким образом, РНК - это переносчик скрытых данных из ядра в клетку, и отличается она от ДНК тем, что в её состав вместо дезоксирибозы входит рибоза, а вместо тимина - урацил. Кроме того, РНК одноцепочная.

Синтез РНК

Глубокий анализ ДНК показал, что после того как РНК покидает ядро, она попадает в цитоплазму, где и может быть встроена как матрица в рибосомы (специальные ферментные системы). Руководствуясь полученной информацией, они могут синтезировать соответствующую последовательность белковых аминокислот. О том, какую именно разновидность органического соединения необходимо присоединить к формирующейся белковой цепи, рибосома узнает из триплетного кода. Каждой аминокислоте соответствует свой определенный триплет, который ее и кодирует.

После того как формирование цепочки завершено, она приобретает конкретную пространственную форму и превращается в белок, способный осуществлять свои гормональные, строительные, ферментные и иные функции. Для любого организма он является генным продуктом. Именно из него определяются всевозможные качества, свойства и проявления генов.

Гены

В первую очередь процессы секвенирования разрабатывались с целью получения информации о том, сколько генов имеет структура молекулы ДНК. И, хотя исследования позволили ученым далеко продвинуться в этом вопросе, узнать точное их количество пока что не представляется возможным.

Еще несколько лет назад предполагалось, что молекулы ДНК содержат приблизительно 100 тыс. генов. Немного погодя цифра уменьшилась до 80 тысяч, а в 1998 г. генетиками было заявлено, что в одной ДНК присутствует только 50 тысяч генов, которые являются всего лишь 3 % всей длины ДНК. Но поразили последние заключения генетиков. Теперь они утверждают, что в геном входит 25-40 тысяч упомянутых единиц. Получается, что за кодирование белков отвечает только 1,5 % хромосомной ДНК.

На этом исследования не прекратились. Параллельная команда специалистов генной инженерии установила, что численность генов в одной молекуле составляет именно 32 тысячи. Как видите, получить окончательный ответ пока что невозможно. Слишком много противоречий. Все исследователи опираются только на свои полученные результаты.

Было ли эволюционирование?

Несмотря на то что нет никаких доказательств эволюции молекулы (так как строение молекулы ДНК хрупкое и имеет малый размер), все же учеными было высказано одно предположение. Исходя из лабораторных данных, они озвучили версию следующего содержания: молекула на начальном этапе своего появления имела вид простого самовоспроизводящегося пептида, в состав которого входило до 32 аминокислот, содержащихся в древних океанах.

После саморепликации, благодаря силам естественного отбора, у молекул появилась способность защищать себя от воздействия внешних элементов. Они стали дольше жить и воспроизводиться в больших количествах. Молекулы, нашедшие себя в липидном пузыре, получили все шансы для самовоспроизведения. В результате череды последовательных циклов липидные пузыри приобрели форму клеточных мембран, а уже далее - всем известных частиц. Следует отметить, что сегодня любой участок молекулы ДНК представляет собой сложную и четко функционирующую структуру, все особенности которой учеными до конца еще не изучены.

Современный мир

Недавно ученые из Израиля разработали компьютер, которому под силу выполнять триллионы операций в секунду. Сегодня это самая быстрая машина на Земле. Весь секрет заключается в том, что инновационное устройство функционирует от ДНК. Профессора говорят, что в ближайшей перспективе такие компьютеры смогут даже вырабатывать энергию.

Специалисты из института Вейцмана в Реховоте (Израиль) год назад заявили о создании программируемой молекулярной вычислительной машины, состоящей из молекул и ферментов. Ими они заменили микрочипы из кремния. К настоящему времени команда еще продвинулась вперед. Теперь обеспечить компьютер необходимыми данными и предоставить нужное топливо может всего одна молекула ДНК.

Биохимические «нанокомпьютеры» - это не выдумка, они уже существуют в природе и проявлены в каждом живом существе. Но зачастую они не управляются людьми. Человек пока что не может оперировать геном какого-либо растения, чтобы рассчитать, скажем, число «Пи».

Идея об использовании ДНК для хранения/обработки данных впервые посетила светлые головы ученных в 1994 году. Именно тогда для решения простой математической задачи была задействована молекула. С того момента ряд исследовательских групп предложил различные проекты, касающиеся ДНК-компьютеров. Но здесь все попытки основывались только на энергетической молекуле. Невооруженным глазом такой компьютер не увидишь, он имеет вид прозрачного раствора воды, находящегося в пробирке. В нем нет никаких механических деталей, а только триллионы биомолекулярных устройств - и это только в одной капле жидкости!

ДНК человека

Какой вид у ДНК человека, людям стало известно в 1953 году, когда ученые впервые смогли продемонстрировать миру двухцепочную модель ДНК. За это Кирк и Уотсон получили Нобелевскую премию, так как данное открытие стало фундаментальным в 20 веке.

Со временем, конечно, доказали, что не только так, как в предложенном варианте, может выглядеть структурированная молекула человека. Проведя более детальный анализ ДНК, открыли А-, В- и левозакрученную форму Z-. Форма А- зачастую является исключением, так как образуется только в том случае, если наблюдается недостаточность влаги. Но это возможно разве что при лабораторных исследованиях, для естественной среды это аномально, в живой клетке такой процесс происходить не может.

Форма В- является классической и известна как двойная правозакрученная цепь, а вот форма Z- не только закручена в обратном направлении, влево, но также имеет более зигзагообразный вид. Учеными выделена еще и форма G-квадруплекс. В ее структуре не 2, а 4 нити. По мнению генетиков, возникает такая форма на тех участках, где имеется избыточное количество гуанина.

Искусственная ДНК

Сегодня уже существует искусственная ДНК, являющаяся идентичной копией настоящей; она идеально повторяет структуру природной двойной спирали. Но, в отличие от первозданного полинуклеотида, в искусственном - всего два дополнительных нуклеотида.

Так как дубляж создавался на основе информации, полученной в ходе различных исследований настоящей ДНК, то он также может копироваться, самовоспроизводиться и эволюционировать. Над созданием такой искусственной молекулы специалисты работали около 20 лет. В результате получилось удивительное изобретение, которое может пользоваться генетическим кодом так же, как и природная ДНК.

К четырем имеющимся азотистым основаниям генетики добавили дополнительные два, которые создали методом химической модификации естественных оснований. В отличие от природной, искусственная ДНК получилась достаточно короткой. Она содержит только 81 пару оснований. Тем не менее она также размножается и эволюционирует.

Репликация молекулы, полученной искусственным путем, имеет место благодаря полимеразной цепной реакции, но пока что это происходит не самостоятельно, а через вмешательство ученых. В упомянутую ДНК они самостоятельно добавляют необходимые ферменты, помещая ее в специально подготовленную жидкую среду.

Конечный результат

На процесс и конечный итог развития ДНК могут влиять различные факторы, например мутации. Это обуславливает обязательное изучение образцов материи, чтобы результат анализов был достоверным и надежным. В качестве примера можно привести тест на отцовство. Но не может не радовать, что такие казусы, как мутация, встречаются редко. Тем не менее образцы материи всегда перепроверяют, чтобы на основе анализа получить более точную информацию.

ДНК растений

Благодаря высоким технологиям секвенирования (HTS) совершена революция и в области геномики - выделение ДНК из растений также возможно. Конечно, получение из растительного материала молекулярной массы ДНК высокого качества вызывает некоторые трудности, обусловленные большим числом копий митохондрий и хлоропластов ДНК, а также высоким уровнем полисахаридов и фенольных соединений. Для выделения рассматриваемой нами структуры в этом случае задействуются самые разные методы.

Водородная связь в ДНК

За водородную связь в молекуле ДНК отвечает электромагнитное притяжение, создаваемое между положительно заряженным атомом водорода, который присоединен к электроотрицательному атому. Данное дипольное взаимодействие не подпадает под критерий химической связи. Но она может осуществиться межмолекулярно либо в различных частях молекулы, т. е. внутримолекулярно.

Атом водорода присоединяется к электроотрицательному атому, являющемуся донором данной связи. Электроотрицательным атомом может быть азот, фтор, кислород. Он - путем децентрализации - привлекает к себе электронное облако из водородного ядра и делает атом водорода заряженным (частично) положительно. Так как размер Н маленький, по сравнению с другими молекулами и атомами, заряд получается также малым.

Расшифровка ДНК

Прежде чем расшифровать молекулу ДНК, ученные сначала берут огромное количество клеток. Для наиболее точной и успешной работы их необходимо около миллиона. Полученные в процессе изучения результаты постоянно сравнивают и фиксируют. Сегодня расшифровка генома - это уже не редкость, а доступная процедура.

Конечно, расшифровывать геном одной клетки - это нецелесообразное занятие. Полученные в ходе таких исследований данные для ученых не представляют никакого интереса. Но важно понимать, что все существующие на данный момент методы декодировки, несмотря на их сложность, недостаточно эффективны. Они позволят считывать только 40-70 % ДНК.

Однако гарвардские профессора недавно заявили о способе, благодаря которому можно расшифровать 90 % генома. Методика основана на добавлении к выделенным клеткам молекул-праймеров, с помощью них и начинается репликация ДНК. Но даже и этот метод нельзя считать успешным, его еще нужно доработать, прежде чем открыто использовать в науке.

Строение и функции ДНК

Наименование параметра Значение
Тема статьи: Строение и функции ДНК
Рубрика (тематическая категория) Образование

ДНК - полимер, мономерами которой являются дезоксирибонуклеотиды. Модель пространственного строения молекулы ДНК в виде двойной спирали была предложена в 1953 ᴦ. Дж. Уотсоном и Ф. Криком (для построения этой модели они использовали работы М. Уилкинса, Р. Франклин, Э. Чаргаффа).

Молекула ДНК образована двумя полинуклеотидными цепями, спирально закрученными друг около друга и вместе вокруг воображаемой оси, ᴛ.ᴇ. представляет собой двойную спираль (исключение - некоторые ДНК-содержащие вирусы имеют одноцепочечную ДНК). Диаметр двойной спирали ДНК - 2 нм, расстояние между сосœедними нуклеотидами - 0,34 нм, на один оборот спирали приходится 10 пар нуклеотидов. Длина молекулы может достигать нескольких сантиметров. Молекулярный вес - десятки и сотни миллионов. Суммарная длина ДНК ядра клетки человека - около 2 м. В эукариотических клетках ДНК образует комплексы с белками и имеет специфическую пространственную конформацию.

Мономер ДНК - нуклеотид (дезоксирибонуклеотид) - состоит из остатков трех веществ: 1) азотистого основания, 2) пятиуглеродного моносахарида (пентозы) и 3) фосфорной кислоты. Азотистые основания нуклеиновых кислот относятся к классам пиримидинов и пуринов. Пиримидиновые основания ДНК (имеют в составе своей молекулы одно кольцо) - тимин, цитозин. Пуриновые основания (имеют два кольца) - аденин и гуанин.

Моносахарид нуклеотида ДНК представлен дезоксирибозой.

Название нуклеотида является производным от названия соответствующего основания. Нуклеотиды и азотистые основания обозначаются заглавными буквами.

Полинуклеотидная цепь образуется в результате реакций конденсации нуклеотидов. При этом между 3"-углеродом остатка дезоксирибозы одного нуклеотида и остатком фосфорной кислоты другого возникает фосфоэфирная связь (относится к категории прочных ковалентных связей). Один конец полинуклеотидной цепи заканчивается 5"-углеродом (его называют 5"-концом), другой - 3"-углеродом (3"-концом).

Против одной цепи нуклеотидов располагается вторая цепь. Расположение нуклеотидов в этих двух цепях не случайное, а строго определœенное: против аденина одной цепи в другой цепи всœегда располагается тимин, а против гуанина - всœегда цитозин, между аденином и тимином возникают две водородные связи, между гуанином и цитозином - три водородные связи. Закономерность, согласно которой нуклеотиды разных цепей ДНК строго упорядоченно располагаются (аденин - тимин, гуанин - цитозин) и избирательно соединяются друг с другом, принято называть принципом комплементарности . Следует отметить, что Дж. Уотсон и Ф. Крик пришли к пониманию принципа комплементарности после ознакомления с работами Э. Чаргаффа. Э. Чаргафф, изучив огромное количество образцов тканей и органов различных организмов, установил, что в любом фрагменте ДНК содержание остатков гуанина всœегда точно соответствует содержанию цитозина, а аденина - тимину (ʼʼправило Чаргаффаʼʼ ), но объяснить данный факт он не смоᴦ.

Из принципа комплементарности следует, что последовательность нуклеотидов одной цепи определяет последовательность нуклеотидов другой.

Цепи ДНК антипараллельны (разнонаправлены), ᴛ.ᴇ. нуклеотиды разных цепей располагаются в противоположных направлениях, и, следовательно, напротив 3"-конца одной цепи находится 5"-конец другой. Молекулу ДНК иногда сравнивают с винтовой лестницей. ʼʼПерилаʼʼ этой лестницы - сахарофосфатный остов (чередующиеся остатки дезоксирибозы и фосфорной кислоты); ʼʼступениʼʼ - комплементарные азотистые основания.

Функция ДНК - хранение и передача наследственной информации.

Строение и функции ДНК - понятие и виды. Классификация и особенности категории "Строение и функции ДНК" 2017, 2018.

Мономерными звеньями которого являются нуклиатиды.

Что такое ДНК?

Вся информация о строении и функционировании любого живого организма содержится в закодированном виде в его генетическом материале. Основу генетического материала организма составляет дезоксирибонуклеиновая кислота (ДНК) .

ДНК большинства организмов – это длинная двухцепочечная полимерная молекула. Последовательность мономерных звеньев (дезоксирибонуклеотидов ) в одной ее цепи соответствует (комплементарна ) последовательности дезоксирибонуклеотидов в другой. Принцип комплементарности обеспечивает синтез новых молекул ДНК, идентичных исходным, при их удвоении (репликации ).

Участок молекулы ДНК, кодирующий определенный признак, – ген .

Гены – это индивидуальные генетические элементы, имеющие строго специфичную нуклеотидную последовательность, и кодирующие определенные признаки организма. Одни из них кодируют белки, другие - только молекулы РНК.

Информация, которая содержится в генах, кодирующих белки (структурных генах), расшифровывается в ходе двух последовательных процессов:

  • синтеза РНК (транскрипции ): на определенном участке ДНК как на матрице синтезируется матричная РНК (мРНК).
  • синтеза белка (трансляции): В ходе согласованной работы многокомпонентной системы при участии транспортных РНК (тРНК ), мРНК , ферментов и различных белковых факторов осуществляется синтез белковой молекулы .

Все эти процессы обеспечивают правильный перевод зашифрованной в ДНК генетической информации с языка нуклеотидов на язык аминокислот. Аминокислотная последовательность белковой молекулы определяет ее структуру и функции.

Строение ДНК

ДНК – это линейный органический полимер . Его – нуклеотиды , которые, в свою очередь, состоят из:

При этом, фосфатная группа присоединена к 5′-атому углерода моносахаридного остатка, а органическое основание - к 1′-атому .

Основания в ДНК бывают двух типов:


Строение нуклеотидов в молекуле ДНК

В ДНК моносахарид представлен 2′-дезоксирибозой , содержащей только 1 гидроксильную группу (ОН) , а в РНК - рибозой , имеющей 2 гидроксильные группы (OH ).

Нуклеотиды соединены друг с другом фосфодиэфирными связями , при этом фосфатная группа 5′-углеродного атома одного нуклеотида связана с З’-ОН-группой дезоксирибозы соседнего нуклеотида (рисунок 1). На одном конце полинуклеотидной цепи находится З’-ОН-группа (З’-конец), а на другом - 5′-фосфатная группа (5′-конец).

Уровни структуры ДНК

Принято выделять 3 уровня структуры ДНК:

  • первичную;
  • вторичную;
  • третичную.

Первичная структура ДНК – это последовательность расположения нуклеотидов в полинуклеотидной цепи ДНК.

Вторичная структура ДНК стабилизируется между комплементарными парами оснований и представляет собой двойную спираль из двух антипараллелных цепочек, закрученных вправо вокруг одной оси.

Общий виток спирали- 3,4нм , расстояние между цепочками 2нм.

Третичная структура ДНК – суперсперализация ДНК. Двойная спираль ДНК на некоторых участках может подвергаться дальнейшей спирализации с образованием суперспирали или открытой кольцевой формы, что часто вызвано ковалентным соединением их открытых концов. Суперспиральная структура ДНК обеспечивает экономную упаковку очень длинной молекулы ДНК в хромосоме. Так, в вытянутой форме длина молекулы ДНК составляет 8 см , а в форме суперспирали укладывается в 5 нм .

Правило Чаргаффа

Правило Э. Чаргаффа – это закономерность количественного содержания азотистых оснований в молекуле ДНК:

  1. У ДНК молярные доли пуриновых и пиримидиновых оснований равны: А+ G = C + Т или (А + G )/(C + Т)=1 .
  2. В ДНК количество оснований с аминогруппами (А + C ) равно количеству оснований с кетогруппами (G + Т): А + C = G + Т или (А + C )/(G + Т)= 1
  3. Правило эквивалентности, то есть: А=Т, Г=Ц; А/Т = 1; Г/Ц=1.
  4. Нуклеотидный состав ДНК у организмов различных групп специфичен и характеризуется коэффициентом специфичности: (Г+Ц)/(А+Т). У высших растений и животных коэффициент специфичности меньше 1, и колеблется незначительно: от 0,54 до 0,98 , у микроорганизмов он больше 1.

Модель ДНК Уотсона-Крика

Б 1953 г. Джеймс Уотсон и Фрэнсис Крик , основываясь на данных рентгеноструктурного анализа кристаллов ДНК, пришли к выводу, что нативная ДНК состоит из двух полимерных цепей, образующих двойную спираль (рисунок 3).

Навитые одна на другую полинуклеотидные цепи удерживаются вместе водородными связями , образующимися между комплементарными основаниями противоположных цепей (рисунок 3). При этом аденин образует пару только с тимином , а гуанин - с цитозином . Пара оснований А-Т стабилизируется двумя водородными связями , а пара G-С - тремя .

Длина двухцепочечной ДНК обычно измеряется числом пар комплементарных нуклеотидов (п .н .). Для молекул ДНК, состоящих из тысяч или миллионов пар нуклеотидов, приняты единицы т.п.н. и м.п.н. соответственно. Например, ДНК хромосомы 1 человека представляет собой одну двойную спираль длиной 263 м.п.н .

Сахарофосфатный остов молекулы , который состоит из фосфатных групп и дезоксирибозных остатков, соединенных 5’-З’-фосфодиэфирными связями , образует «боковины винтовой лестницы», а пары оснований А-Т и G-С - ее ступеньки (рисунок 3).

Рисунок 3: Модель ДНК Уотсона-Крика

Цепи молекулы ДНК антипараллельны : одна из них имеет направление 3’→5′ , другая 5’→3′ . В соответствии с принципом комплементарности , если в одной из цепей имеется нуклеотидная последовательность 5-TAGGCAT-3′ , то в комплементарной цепи в этом месте должна находиться последовательность 3′-ATCCGTA-5′ . В этом случае двухцепочечная форма будет выглядеть следующим образом:

  • 5′-TAGGCAT-3′
  • 3-ATCCGTA-5′.

В такой записи 5′-конец верхней цепи всегда располагают слева, а 3′-конец - справа.

Носитель генетической информации должен удовлетворять двум основным требованиям: воспроизводиться (реплицироваться) с высокой точностью и детерминировать (кодировать) синтез белковых молекул .

Модель ДНК Уотсона-Крика полностью отвечает этим требованиям, так как:

  • согласно принципу комплементарности каждая цепь ДНК может служить матрицей для образования новой комплементарной цепи. Следовательно, после одного раунда образуются две дочерние молекулы, каждая из которых имеет такую же нуклеотидную последовательность, как исходная молекула ДНК.
  • нуклеотидная последовательность структурного гена однозначно задает аминокислотную последовательность кодируемого ею белка.
  1. Одна молекула ДНК человека вмещает порядка 1,5 гигабайта информации . При этом, ДНК всех клеток человеческого организма занимают 60 млрд. терабайт, что сохраняются на 150-160 граммах ДНК.
  2. Международный день ДНК отмечается 25 апреля. Именно в этот день в 1953 году Джеймс Уотсон и Фрэнсис Крик опубликовали в журнале Nature свою статью под названием «Молекулярная структура нуклеиновых кислот» , где описали двойную спираль молекулы ДНК.

Список литературы: Молекулярная биотехнология: принципы и применение, Б.Глик, Дж. Пастернак, 2002 год

В данной статье вы сможете узнать биологическую роль ДНК. Итак, данная аббревиатура всем знакома еще со школьной скамьи, но далеко не все имеют представление, что это такое. В памяти после школьного курса биологии остаются минимальные знания по генетике и наследственности, так как эту сложную тему детям дают только поверхностно. Но эти знания (биологическая роль ДНК, оказываемое влияние на организм) могут быть невероятно полезными.

Начнем с того, что нуклеиновые кислоты выполняют важную функцию, а именно - обеспечивают непрерывность жизни. Эти макромолекулы представлены в двух формах:

  • ДНК (DNA);
  • РНК (RNA).

Они являются передатчиками генетического плана строения и функционирования клеток организма. Поговорим о них более подробно.

ДНК и РНК

Начнем с того, какая отрасль науки занимается такими сложными вопросами, как:

  • изучение принципов хранения ;
  • ее реализация;
  • передача;
  • изучение структуры биополимеров;
  • их функции.

Все это изучается молекулярной биологией. Именно в этой отрасли биологических наук можно найти ответ на вопрос о том, какова биологическая роль ДНК и РНК.

Эти высокомолекулярные соединения, образованные из нуклеотидов, имеют название "нуклеиновые кислоты". Именно здесь хранится информация об организме, которая определяет развитие особи, рост и наследственность.

Открытие дезоксирибонуклеиновой и приходится на 1868 год. Тогда ученым удалось обнаружить их в ядрах лейкоцитов и сперматозоидах лося. Последующее изучение показало, что ДНК можно обнаружить во всех клетках растительной и животной природы. Модель ДНК была представлена в 1953 году, а Нобелевская премия за открытие вручена в 1962 году.

ДНК

Начнем этот раздел с того, что всего выделяется 3 типа макромолекул:

  • дезоксирибонуклеиновая кислота;
  • рибонуклеиновая кислота;
  • белки.

Сейчас мы более подробно рассмотрим строение, биологическую роль ДНК. Итак, этот биополимер передает данные о наследственности, особенностях развития не только носителя, но и всех предыдущих поколений. - нуклеотид. Таким образом, ДНК является главным компонентом хромосом, содержащим генетический код.

Как становится возможной передача этой информации? Все дело заключается в умении этих макромолекул самовоспроизводиться. Число их бесконечно, что можно объяснить большими размерами, а как следствие - огромным количеством всевозможных последовательностей нуклеотидов.

Структура ДНК

Для того чтобы понять биологическую роль ДНК в клетке, необходимо ознакомиться со структурой данной молекулы.

Начнем с самого простого, все нуклеотиды в своей структуре имеют три компонента:

  • азотистое основание;
  • пентозный сахар;
  • фосфатную группу.

Каждый отдельный нуклеотид в молекуле ДНК содержит одно азотистое основание. Оно может быть абсолютно любым из четырех возможных:

  • А (аденин);
  • Г (гуанин);
  • Ц (цитозин);
  • Т (тимин).

А и Г - пурины, а Ц, Т и У (урацил) - пирамидины.

Существует несколько правил соотношения азотистых оснований, именуемых правилами Чаргаффа.

  1. А = Т.
  2. Г = Ц.
  3. (А + Г = Т + Ц) можем перенести все неизвестные в левую сторону и получить: (А + Г)/(Т + Ц) = 1 (эта формула является наиболее удобной при решении задач по биологии).
  4. А + Ц = Г + Т.
  5. Величина (А + Ц)/(Г + Т) постоянная. У человека она равняется 0,66, а вот, например, у бактерии - от 0,45 до 2,57.

Строение каждой молекулы ДНК напоминает двойную закрученную спираль. Обратите внимание на то, что полинуклеотидные цепи при этом являются антипараллельными. То есть расположение нуклеотидных пар у одной цепи имеет обратную последовательность, чем у другой. Каждый виток этой спирали содержит целых 10 нуклеотидных пар.

Как же скрепляются между собой эти цепочки? Почему молекула прочная и не распадается? Все дело в водородной связи между азотистыми основаниями (между А и Т - две, между Г и Ц - три) и гидрофобном взаимодействии.

В завершение раздела хочется упомянуть о том, что ДНК являются самыми крупными органическими молекулами, длина которых варьируется от 0,25 до 200 нм.

Комплементарность

Остановимся более подробно на парных связях. Уже мы говорили о том, что пары азотистых оснований образуются не хаотичным характером, а в строгой последовательности. Так, аденин может связаться только с тимином, а гуанин - только с цитозином. Это последовательное расположение пар в одной цепи молекулы диктует расположение их в другой.

При репликации или удвоении для образования новой молекулы ДНК обязательно соблюдается данное правило, имеющее название "комплементарность". Можно заметить следующую закономерность, которую упоминали в сводке правил Чаргаффа - одинаково число следующих нуклеотидов: А и Т, Г и Ц.

Репликация

Теперь поговорим о биологической роли репликации ДНК. Начнем с того, что у данной молекулы есть эта уникальная способность к самовоспроизведению. Под этим термином понимается синтез дочерней молекулы.

В 1957 году было предложено три модели данного процесса:

  • консервативная (сохраняется исходная молекула и образуется новая);
  • полуконсервативная (разрыв исходной молекулы на моноцепи и присоединение комплементарных оснований к каждой из них);
  • дисперсная (распад молекулы, репликация фрагментов и сбор в случайном порядке).

Процесс репликации имеет три этапа:

  • инициация (расплетение участков ДНК при помощи фермента хеликазы);
  • элонгация (удлинение цепи путем присоединения нуклеотидов);
  • терминация (достижение необходимой длины).

У этого сложного процесса есть особенная функция, то есть биологическая роль - обеспечение точной передачи генетической информации.

РНК

Рассказали, в чем заключается биологическая роль ДНК, теперь предлагаем переходить к рассмотрению (то есть РНК).

Начнем этот раздел с того, что эта молекула имеет не менее важное значение по сравнению с ДНК. Мы ее можем обнаружить абсолютно в любом организме, клетках прокариот и эукариот. Данная молекула наблюдается даже в некоторых вирусах (речь идет об РНК-содержащих вирусах).

Отличительная особенность РНК - наличие одной цепи молекул, но, как и ДНК, она состоит из четырех азотистых оснований. В данном случае это:

  • аденин (А);
  • урацил (У);
  • цитозин (Ц);
  • гуанин (Г).

Все РНК делятся на три группы:

  • матричная, которую принято называть информационной (сокращение возможно двумя формами: иРНК или мРНК);
  • рибосомная (рРНК).

Функции

Разобравшись с биологической ролью ДНК, ее строением и особенностями РНК, предлагаем переходить к особым миссиям (функциям) рибонуклеиновых кислот.

Начнем с иРНК или мРНК, основной задачей которой является передача информации от молекулы ДНК к цитоплазме ядра. Также мРНК является матрицей для синтеза белка. Что касается процентного содержания этого вида молекул, то оно достаточно низкое (порядка 4 %).

А процентное содержание рРНК в клетке равняется 80. Они необходимы, так как являются основой рибосом. Рибосомная РНК принимает участие в синтезе белка и сборке полипептидной цепи.

Адаптер, выстраивающий аминокислоты цепи - тРНК, переносящий аминокислоты в область синтеза белка. Процентное содержание в клетке - порядка 15 %.

Биологическая роль

Подведем итог: какова биологическая роль ДНК? В момент открытия этой молекулы очевидной информации по этому поводу дать не могли, но и сейчас далеко не все известно о значении ДНК и РНК.

Если говорить об общебиологическом значении, то их роль заключается в передаче наследственной информации от поколения к поколению, синтезе белка и кодировке белковых структур.

Многие высказывают и такую версию: эти молекулы связаны не только с биологической, но и с духовной жизнью живых существ. Если верить мнению метафизиков, то в ДНК содержится опыт прошлых жизней и божественная энергия.

Министерство образования российской федерации

Южно-уральский государственный университет

Кафедра «Экономики и Управления»

Дисциплина «Концепция современного естествознания»

«Химические основы строения ДНК»

Выполнил: студент ЭиУ-232

Седракян Игорь

Проверил: Сенин А.В.

Челябинск

    Введение

    Структура ДНК

    Состав ДНК

    Макромолекулярная структура ДНК

4.1 Выделение дезоксирибонуклеиновых кислот

4.2 Фракционирование

    Функции ДНК

    Межнуклеотидные связи

6.1 Межнуклеотидная связь в ДНК

7. Матричный синтез ДНК

7.1 ДНК-полимеразы

7.2 Инициация цепей ДНК

7.3 Расплетение двойной спирали ДНК

7.4Прерывистый синтез ДНК

7.5 Кооперативное действие белков репликационной вилки

8. Заключение

    Использованные источники

    Введение

Наследуемые признаки заложены в материальных единицах, генах, которые располагаются в хромосомах клеточного ядра. Химическая природа генов известна с 1944 г.: речь идет о дезоксирибонуклеиновой кислоте (ДНК). Физическая структура была выяснена в 1953 г. Двойная спираль этой макромолекулы объясняет механизм наследственной передачи признаков.

Присматриваясь к окружающему нас миру, мы отмечаем великое разнообразие живых существ – от растений до животных. Под этим кажущимся разнообразием в действительности скрывается удивительное единство живых клеток – элементов, из которых собран любой организм и взаимодействием которых определяется его гармоничное существование. С позиции вида сходство между отдельными особями велико, и все-таки не существует двух абсолютно идентичных организмов (не считая однояйцовых близнецов). В конце XIX века в работах Грегора Менделя были сформулированы основные законы, определившие наследственную передачу признаков из поколения в поколение. В начале ХХ века в опытах Т.Моргана было показано, что элементарные наследуемые признаки обусловлены материальными единицами (генами), локализованными в хромосомах, где они располагаются последовательно друг за другом.

В 1944 г. работы Эвери, Мак-Леода и Мак-Карти определили химическую природу генов: они состоят из дезоксирибонуклеиновой кислоты (ДНК). Через 10 лет Дж. Уотсон и Ф. Крик предложили модель физической структуры молекулы ДНК. Длинная молекула образована двойной спиралью, а комплиментарное взаимодействие между двумя нитями этой спирали позволяет понять, каким образом генетическая информация точно копируется (реплицируется) и передается последующим поколениям.

Одновременно с этими открытиями ученые пытались проанализировать и «продукты» генов, т.е. те молекулы, которые синтезируются в клетках под их контролем. Работы Эфрусси, Бидла и Татума накануне второй мировой войны выдвинули идею о том, что гены «продуцируют» белки. Итак, ген хранит информацию для синтеза белка (фермента), необходимого для успешного осуществления в клетке определенной реакции. Но пришлось подождать до 60-х годов, прежде чем был разгадан сложный механизм расшифровки информации, заключенной в ДНК, и ее перевода в форму белка. В конце концов, во многом благодаря трудам Ниренберга (США), был открыт закон соответствия между ДНК и белками – генетический код.

    Структура ДНК .

В 1869 году швейцарский биохимик Фридрих Мишер обнаружил в ядре клеток соединения с кислотными свойствами и с еще большей молекулярной массой, чем белки. Альтман назвал их нуклеиновыми кислотами, от латинского слова «нуклеус» - ядро. Так же, как и белки, нуклеиновые кислоты являются полимерами. Мономерами их служат нуклеотиды, в связи с чем нуклеиновые кислоты можно еще назвать полинуклеотидами.

Нуклеиновые кислоты были найдены в клетках всех организмов, начиная от простейших и кончая высшими. Самое удивительное, что химический состав, структура и основные свойства этих веществ оказались сходными у разнообразных живых организмов. Но если в построении белков принимают участие около 20 видов аминокислот, то разных нуклеотидов, входящих в состав нуклеиновых кислот, всего четыре.

Нуклеиновые кислоты различают на две разновидности - дезоксирибонуклеиновую кислоту (ДНК) и рибонуклеиновую кислоту (РНК). В состав ДНК входят азотистые основания (аденин (А), гуанин (Г), тимин (Т), цитозин (Ц)), дезоксирибоза С 5 Н 10 О 4 и остаток фосфорной кислоты. В состав РНК вместо тимина входит урацил (У), а вместо дезоксирибозы - рибоза (С5Н10О5). Мономерами ДНК и РНК являются нуклеотиды, которые состоят из азотистых, пуриновых (аденин и гуанин) и пиримидиновых (урацил, тимин и цитозин) оснований, остатка фосфорной кислоты и углеводов (рибозы и дезоксирибозы).

Молекулы ДНК содержатся в хромосомах ядра клетки живых организмов, в эквивалентных структурах митохондрий, хлоропластов, в прокариотных клетках и во многих вирусах. По своей структуре молекула ДНК похожа на двойную спираль. Структурная модель ДНК в
виде двойной спирали впервые предложена в 1953 г. американским биохимиком Дж. Уотсоном и английским биофизиком и генетиком Ф. Криком, удостоенными вместе с английским биофизиком М. Уилкинсоном, получившим рентгенограмму ДНК, Нобелевской премии 1962 г. Нуклеиновые кислоты - это биополимеры, макромолекулы которых состоят из многократно повторяющихся звеньев - нуклеотидов. Поэтому их называют также полинуклеотидами. Важнейшей характеристикой нуклеиновых кислот является их нуклеотидный состав. В состав нуклеотида - структурного звена нуклеиновых кислот - входят три составные части:

азотистое основание - пиримидиновое или пуриновое. В нуклеиновых кислотах содержатся основания 4-х разных видов: два из них относятся к классу пуринов и два – к классу пиримидинов. Азот, содержащийся в кольцах, придает молекулам основные свойства.

моносахарид - рибоза или 2-дезоксирибоза. Сахар, входящий в состав нуклеотида, содержит пять углеродных атомов, т.е. представляет собой пентозу. В зависимости от вида пентозы, присутствующей в нуклеотиде, различают два вида нуклеиновых кислот – рибонуклеиновые кислоты (РНК), которые содержат рибозу, и дезоксирибонуклеиновые кислоты (ДНК), содержащие дизоксирибозу.

остаток фосфорной кислоты. Нуклеиновые кислоты являются кислотами потому, что в их молекулах содержится фосфорная кислота.

Нуклеотид - фосфорный эфир нуклеозида. В состав нуклеозида входят два компонента: моносахарид (рибоза или дезоксирибоза) и азотистое основание.

Метод определения состава ПК основан на анализе гидролизатов, образующихся при их ферментативном или химическом расщеплении. Обычно используются три способа химического расщепления НК. Кислотный гидролиз в жестких условиях (70%-ная хлорная кислота, 100°С, 1ч или 100%-ная муравьиная кислота, 175 °C, 2 ч), применяемый для анализа как ДНК, так и РНК, приводит к разрыву всех N-гликозидных связей и образованию смеси пуриновых и пиримидиновых оснований.

Нуклеотиды соединяются в цепь посредством ковалентных связей. Образованные таким образом цепи нуклеотидов объединяется в одну молекулу ДНК по всей длине водородными связями: адениновый нуклео-тид одной цепи соединяется с тиминовым нуклеотидом другой цепи, а гуаниновый - с цитозиновым. При этом аденин всегда распознает только тимин и связывается с ним и наоборот. Подобную пару образуют гуанин и цитозин. Такие пары оснований, как и нуклеотиды, называются комплементарными, а сам принцип формирования двухцепочной молекулы ДНК - принципом комплементарности. Число нуклеотидных пар, например, в организме человека составляет 3 - 3,5 млрд.

ДНК - материальный носитель наследственной информации, которая кодируется последовательностью нуклеотидов. Расположение четырех типов нуклеотидов в цепях ДНК определяет последовательность аминокислот в молекулах белка, т.е. их первичную структуру. От набора белков зависят свойства клеток и индивидуальные признаки организмов. Определенное сочетание нуклеотидов, несущих информацию о структуре белка, и последовательность их расположения в молекуле ДНК образуют генетический код. Ген (от греч. genos - род, происхождение) - единица наследственного материала, ответственная за формирование какого-либо признака. Он занимает участок молекулы ДНК, определяющий структуру одной молекулы белка. Совокупность генов, содержащихся в одинарном наборе хромосом данного организма, называется геномом, а генетическая конституция организма (совокупность всех его генов) - генотипом. Нарушение последовательности нуклеотидов в цепи ДНК, а следовательно, в генотипе приводит к наследственным изменениям в организме-мутациям.

Для молекул ДНК характерно важное свойство удвоения - образования двух одинаковых двойных спиралей, каждая из которых идентична исходной молекуле. Такой процесс удвоения молекулы ДНК называется репликацией. Репликация включает в себя разрыв старых и формирование новых водородных связей, объединяющих цепи нуклеотидов. В начале репликации две старые цепи начинают раскручиваться и отделяться друг от друга. Затем по принципу комплементарности к двум старым цепям пристраиваются новые. Так образуются две идентичные двойные спирали. Репликация обеспечивает точное копирование генетической информации, заключенной в молекулах ДНК, и передает ее по наследству от поколения к поколению.

    Состав ДНК

ДНК (дезоксирибонуклеиновая кислота) - биологический полимер, состоящий из двух полинуклеотидных цепей, соединенных друг с другом. Мономеры, составляющие каждую из цепей ДНК, представляют собой сложные органические соединения, включающие одно из четырех азотистых оснований: аденин (А) или тимин (Т), цитозин (Ц) или гуанин (Г); пятиатомный сахар пентозу - дезоксирибозу, по имени которой получила название и сама ДНК, а также остаток фосфорной кислоты. Эти соединения носят название нуклеотидов. В каждой цепи нуклеотиды соединяются путем образования ковалентных связей между дезоксирибозой одного и остатком фосфорной кислоты последующего нуклеотида. Объединяются две цепи в одну молекулу при помощи водородных связей, возникающих между азотистыми основаниями, входящими в состав нуклеотидов, образующих разные цепи.

Исследуя нуклеотидный состав ДНК различного происхождения, Чаргафф обнаружил следующие закономерности.

1. Все ДНК независимо от их происхождения содержат одинаковое число пуриновых и пиримидиновых оснований. Следовательно, в любой ДНК на каждый пуриновый нуклеотид приходится один пиримидиновый.

2. Любая ДНК всегда содержит в равных количествах попарно аденин и тимин, гуанин и цитозин, что обычно обозначают как А=Т и G=C. Из этих закономерностей вытекает третья.

3. Количество оснований, содержащих аминогруппы в положении 4 пиримидинового ядра и 6 пуринового (цитозин и аденин), равно количеству оснований, содержащих оксо-группу в тех же положениях (гуанин и тимин), т. е. A+C=G+T. Эти закономерности получили название правил Чаргаффа. Наряду с этим было установлено, что для каждого типа ДНК суммарное содержание гуанина и цитозина не равно суммарному содержанию аденина и тимина, т. е. что (G+C)/(A+T), как правило, отличается от единицы (может быть как больше, так и меньше ее). По этому признаку различают два основных типа ДНК: АТ-тип с преимущественным содержанием аденина и тимина и GC-тип с преимущественным содержанием гуанина и цитозина.

Величину отношения содержания суммы гуанина и цитозина к сумме содержания аденина и тимина, характеризующую нуклеотидный состав данного вида ДНК, принято называть коэффициентом специфичности . Каждая ДНК имеет характерный коэффициент специфичности, который может изменяться в пределах от 0,3 до 2,8. При подсчете коэффициента специфичности учитывается содержание минорных оснований, а также замены основных оснований их производными. Например, при подсчете коэффициента специфичности для ЭДНК зародышей пшеницы, в которой содержится 6% 5-метилцитозина, последний входит в сумму содержания гуанина (22,7%) и цитозина (16,8%). Смысл правил Чаргаффа для ДНК стал понятным после установления ее пространственной структуры.