Что такое генетический код: общие сведения. Вырожденность генетического кода: общие сведения Код наследственной информации

Нуклеотиды ДНК и РНК
  1. Пуриновые: аденин, гуанин
  2. Пиримидиновые: цитозин, тимин (урацил)

Кодон - триплет нуклеотидов, кодирующих определенную аминокислоту.

таб. 1. Аминокислоты, которые обычно встречаются в белках
Название Сокращенное обозначение
1. Аланин Ala
2. Аргинин Arg
3. Аспарагин Asn
4. Аспарагиновая кислота Asp
5. Цистеин Cys
6. Глутаминовая кислота Glu
7. Глутамин Gln
8. Глицин Gly
9. Гистидин His
10. Изолейцин Ile
11. Лейцин Leu
12. Лизин Lys
13. Метионин Met
14. Фенилаланин Phe
15. Пролин Pro
16. Серии Ser
17. Треонин Thr
18. Триптофан Trp
19. Тирозин Tyr
20. Валин Val

Генетический код, который еще называют аминокислотным кодом, - это система записи информации о последовательности расположения аминокислот в белке с помощью последовательности расположения нуклеотидных остатков в ДНК, которые содержат одно из 4-х азотистых оснований: аденин (А), гуанин (G), цитозин (C) и тимин (Т). Однако, поскольку двунитчатая спираль ДНК не принимает непосредственного участия в синтезе белка, который кодируется одной из этих нитей (т.е. РНК), то код записывается на языке РНК, в котором вместо тимина входит урацил (U). По этой же причине принято говорить, что код - это последовательность нуклеотидов, а не пар нуклеотидов.

Генетический код представлен определенными кодовыми словами, - кодонами.

Первое кодовое слово было расшифровано Ниренбергом и Маттеи в 1961 г. Они получили из кишечной палочки экстракт, содержащий рибосомы и прочие факторы, необходимые для синтеза белка. Получилась бесклеточная система для синтеза белка, которая могла бы осуществлять сборку белка из аминокислот, если в среду добавить необходимую мРНК. Добавив в среду синтетическую РНК, состоящую только из урацилов, они обнаружили, что образовался белок, состоящий только из фенилаланина (полифенилаланин). Так было установлено, что триплет нуклеотидов УУУ (кодон) соответствует фенилаланину. В течение последующих 5-6 лет были определены все кодоны генетического кода.

Генетический код - своеобразный словарь, переводящий текст, записанный с помощью четырех нуклеотидов, в белковый текст, записанный с помощью 20 аминокислот. Остальные аминокислоты, встречающиеся в белке, являются модификациями одной из 20 аминокислот.

Свойства генетического кода

Генетический код имеет следующие свойства.

  1. Триплетность - каждой аминокислоте соответствует тройка нуклеотидов. Легко подсчитать, что существуют 4 3 = 64 кодона. Из них 61 является смысловым и 3 - бессмысленными (терминирующими, stop-кодонами).
  2. Непрерывность (нет разделительных знаков между нуклеотидами) - отсутствие внутригенных знаков препинания;

    Внутри гена каждый нуклеотид входит в состав значащего кодона. В 1961г. Сеймур Бензер и Френсис Крик экспериментально доказали триплетность кода и его непрерывность (компактость) [показать]

    Суть эксперимента: "+" мутация - вставка одного нуклеотида. "-" мутация - выпадение одного нуклеотида.

    Одиночная мутация ("+" или "-") в начале гена или двойная мутация ("+" или "-") - портит весь ген.

    Тройная мутация ("+" или "-") в начале гена портит лишь часть гена.

    Четверная "+" или "-" мутация опять портит весь ген.

    Эксперимент был проведен на двух рядом расположенных фаговых генах и показал, что

    1. код триплетен и внутри гена нет знаков препинания
    2. между генами есть знаки препинания
  3. Наличие межгенных знаков препинания - наличие среди триплетов инициирующих кодонов (с них начинается биосинтез белка), кодонов - терминаторов (обозначают конец биосинтеза белка);

    Условно к знакам препинания относится и кодон AUG - первый после лидерной последовательности. Он выполняет функцию заглавной буквы. В этой позиции он кодирует формилметионин (у прокариот).

    В конце каждого гена, кодирующего полипептид, находится, по меньшей мере, один из 3-х терминирующих кодонов, или стоп-сигналов: UAA, UAG, UGA. Они терминируют трансляцию.

  4. Колинеарность - соответствие линейной последовательности кодонов мРНК и аминокислот в белке.
  5. Специфичность - каждой аминокислоте соответствуют только определенные кодоны, которые не могут использоваться для другой аминокислоты.
  6. Однонаправленность - кодоны считываются в одном направлении - от первого нуклеотида к последующим
  7. Вырожденность, или избыточность ,- одну аминокислоту может кодировать несколько триплетов (аминокислот – 20, возможных триплетов – 64, 61 из них смысловой, т. е. в среднем каждой аминокислоте соответствует около 3 кодонов); исключение составляет метионин (Met) и триптофан (Trp).

    Причина вырожденности кода состоит в том, что главную смысловую нагрузку несут два первых нуклеотида в триплете, а третий не так важен. Отсюда правило вырожденности кода : если два кодона имеют два одинаковых первых нуклеотида, а их третьи нуклеотиды принадлежат к одному классу (пуриновому или пиримидиновому), то они кодируют одну и ту же аминокислоту.

    Однако из этого идеального правила есть два исключения. Это кодон АUА, который должен соответствовать не изолейцину, а метионину и кодон UGА, который является терминирующим, тогда как должен соответствовать триптофану. Вырожденность кода имеет, очевидно, приспособительное значение.

  8. Универсальность - все перечисленные выше свойства генетического кода характерны для всех живых организмов.
    Кодон Универсальный код Митохондриальные коды
    Позвоночные Беспозвоночные Дрожжи Растения
    UGA STOP Trp Trp Trp STOP
    AUA Ile Met Met Met Ile
    CUA Leu Leu Leu Thr Leu
    AGA Arg STOP Ser Arg Arg
    AGG Arg STOP Ser Arg Arg

    В последнее время принцип универсальности кода был поколеблен в связи c открытием Береллом в 1979 г. идеального кода митохондрий человека, в котором выполняется правило вырожденности кода. В коде митохондрий кодон UGA соответствует триптофану, а AUA - метионину, как того требует правило вырожденности кода.

    Возможно, в начале эволюции у всех простейших организмов был такой же код, как и у митохондрий, а затем он претерпел небольшие отклонения.

  9. Неперекрываемость - каждый из триплетов генетического текста независим друг от друга, один нуклеотид входит в состав только одного триплета; На рис. показана разница между перекрывающимся и неперекрывающимся кодом.

    В 1976г. была секвенирована ДНК фага φХ174. У него одноцепочечная кольцевая ДНК, состоящая из 5375 нуклеотидов. Было известно, что фаг кодирует 9 белков. Для 6 из них были определены гены, располагающиеся друг за другом.

    Выяснилось, что есть перекрывание. Ген Е полностью находится внутри гена D. Его инициирующий кодон появляется в результате сдвига считывания на один нуклеотид. Ген J начинается там, где кончается ген D. Инициирующий кодон гена J перекрывается с терминирующим кодоном гена D в результате сдвига на два нуклеотида. Конструкция называется "сдвиг рамки считывания" на число нуклеотидов, некратное трем. На сегодняшний день перекрывание показано только для нескольких фагов.

  10. Помехоустойчивость - отношение числа консервативных замен к числу радикальных замен.

    Мутации замен нуклеотидов, не приводящие к смене класса кодируемой аминокислоты, называют консервативными. Мутации замен нуклеотидов, приводящие к смене класса кодируемой аминокислоты, называют радикальными.

    Так как одна и та же аминокислота может кодироваться разными триплетами, то некоторые замены в триплетах не приводят к замене кодируемой аминокислоты (например UUU -> UUC оставляет фенилаланин). Некоторые замены меняют аминокислоту на другую из того же класса (неполярный, полярный, основной, кислотный), остальные замены меняют и класс аминокислоты.

    В каждом триплете можно провести 9 однократных замен, т.е. выбрать, какую из позиций меняем - можно тремя способами (1-я или 2-я или 3-я), причем выбранную букву (нуклеотид) можно поменять на 4-1=3 других буквы (нуклеотида). Общее количество возможных замен нуклеотидов - 61 по 9 = 549.

    Прямым подсчетом по таблице генетического кода можно убедиться, что из них: 23 замены нуклеотидов приводят к появлению кодонов - терминаторов трансляции. 134 замены не меняют кодируемую аминокислоту. 230 замен не меняют класс кодируемой аминокислоты. 162 замены приводят к смене класса аминокислоты, т.е. являются радикальными. Из 183 замен 3-его нуклеотида, 7 приводят к появлению терминаторов трансляции, а 176 - консервативны. Из 183 замен 1-ого нуклеотида, 9 приводят к появлению терминаторов, 114 - консервативны и 60 - радикальны. Из 183 замен 2-го нуклеотида, 7 приводят к появлению терминаторов, 74 - консервативны, 102 - радикальны.


В обмене веществ организма ведущая роль принадлежит белкам и нуклеиновым кислотам.
Белковые вещества составляют основу всех жизненно важных структур клетки, обладают необычайно высокой реакционной способностью, наделены каталитическими функциями.
Нуклеиновые кислоты входят в состав важнейшего органа клетки - ядра, а также цитоплазмы, рибосом, митохондрий и т. д. Нуклеиновые кислоты играют важную, первостепенную роль в наследственности, изменчивости организма, в синтезе белка.

План синтеза белка хранится в ядре клетки, а непосредственно синтез происходит вне ядра, поэтому необходима служба доставки закодированного плана из ядра к месту синтеза. Такую службу доставки исполняют молекулы РНК.

Процесс начинается в ядре клетки: раскручивается и открывается часть «лестницы» ДНК. Благодаря этому буквы РНК образуют связи с открытыми буквами ДНК одной из нитей ДНК. Фермент переносит буквы РНК, чтобы соединить их в нить. Так буквы ДНК «переписываются» в буквы РНК. Новообразованная цепочка РНК отделяется, и «лестница» ДНК снова закручивается. Процесс считки информации с ДНК и синтеза по ее матрице РНК называется транскрипцией , а синтезированная РНК называется информационной или и-РНК .

После дальнейших изменений этот вид закодированной и-РНК готов. и-РНК выходит из ядра и направляется к месту синтеза белка, где буквы и-РНК расшифровываются. Каждый набор из трех букв и-РНК образует «букву», обозначающее одну конкретную аминокислоту.

Другой вид РНК отыскивает эту аминокислоту, захватывает ее с помощью фермента и доставляет к месту синтеза белка. Эта РНК называется транспортной, или т-РНК. По мере прочтения и перевода сообщения и-РНК цепочка аминокислот растет. Эта цепочка закручивается и укладывается в уникальную форму, создавая один вид белка. Примечателен даже процесс укладки белка: на то, чтобы с помощью компьютера просчитать все варианты укладки белка среднего размера, состоящего из 100 аминокислот, потребовалось бы 1027 (!) лет. А для образования в организме цепочки из 20 аминокислот требуется не более одной секунды, и этот процесс происходит непрерывно во всех клетках тела.

Гены, генетический код и его свойства.

На Земле живет около 7 млрд людей. Если не считать 25-30 млн пар однояйцовых близнецов, то генетически все люди разные : каждый уникален, обладает неповторимыми наследственными особенностями, свойствами характера, способностями, темпераментом.

Такие различия объясняются различиями в генотипах -наборах генов организма; у каждого он уникален. Генетические признаки конкретного организма воплощаются в белках - следовательно, и строение белка одного человека отличается, хотя и совсем немного, от белка другого человека.

Это не означает , что у людей не встречается совершенно одинаковых белков. Белки, выполняющие одни и те же функции, могут быть одинаковыми или совсем незначительно отличаться одной-двумя аминокислотами друг от друга. Но не существует на Земле людей (за исключением однояйцовых близнецов), у которых все белки были бы одинаковы .

Информация о первичной структуре белка закодирована в виде последовательности нуклеотидов в участке молекулы ДНК, гене – единице наследственной информации организма. Каждая молекула ДНК содержит множество генов. Совокупность всех генов организма составляет его генотип . Таким образом,

Ген – единица наследственной информации организма, которой соответствует отдельный участок ДНК

Кодирование наследственной информации происходит с помощью генетического кода , который универсален для всех организмов и отличается лишь чередованием нуклеотидов, образующих гены, и кодирующих белки конкретных организмов.

Генетический код состоит из троек (триплетов) нуклеотидов ДНК, комбинирующихся в разной последовательности (ААТ, ГЦА, АЦГ, ТГЦ и т.д.), каждый из которых кодирует определенную аминокислоту (которая будет встроена в полипептидную цепь).

Собственно кодом считается последовательность нуклеотидов в молекуле и-РНК , т.к. она снимает информацию с ДНК (процесс транскрипции ) и переводит ее в последовательность аминокислот в молекулах синтезируемых белков (процесс трансляции ).
В состав и-РНК входят нуклеотиды А-Ц-Г-У, триплеты которых называются кодонами : триплет на ДНК ЦГТ на и-РНК станет триплетом ГЦА, а триплет ДНК ААГ станет триплетом УУЦ. Именно кодонами и-РНК отражается генетический код в записи.

Таким образом, генетический код - единая система записи наследственной информации в молекулах нуклеиновых кислот в виде последовательности нуклеотидов . Генетический код основан на использовании алфавита, состоящего всего из четырех букв-нуклеотидов, отличающихся азотистыми основаниями: А, Т, Г, Ц.

Основные свойства генетического кода:

1. Генетический код триплетен . Триплет (кодон) - последовательность трех нуклеотидов, кодирующая одну аминокислоту. Поскольку в состав белков входит 20 аминокислот, то очевидно, что каждая из них не может кодироваться одним нуклеотидом (поскольку в ДНК всего четыре типа нуклеотидов, то в этом случае 16 аминокислот остаются незакодированными ). Двух нуклеотидов для кодирования аминокислот также не хватает, поскольку в этом случае могут быть закодированы только 16 аминокислот. Значит, наименьшее число нуклеотидов, кодирующих одну аминокислоту, должно быть не менее трех. В этом случае число возможных триплетов нуклеотидов составляет 43 = 64.

2. Избыточность (вырожденность ) кода является следствием его триплетности и означает то, что одна аминокислота может кодироваться несколькими триплетами (поскольку аминокислот 20, а триплетов - 64), за исключением метионина и триптофана, которые кодируются только одним триплетом. Кроме того, некоторые триплеты выполняют специфические функции: в молекуле и-РНК триплеты УАА, УАГ, УГА - являются терминирующими кодонами, т. е. стоп -сигналами, прекращающими синтез полипептидной цепи. Триплет, соответствующий метионину (АУГ), стоящий в начале цепи ДНК, не кодирует аминокислоту, а выполняет функцию инициирования (возбуждения) считывания.

3. Однозначность кода - одновременно с избыточностью коду присуще свойство однозначности : каждому кодону соответствует только одна определенная аминокислота.

4. Коллинеарность кода, т.е. последовательность нуклеотидов в гене точно соответствует последовательности аминокислот в белке.

5. Генетический код неперекрываем и компактен , т. е. не содержит «знаков препинания». Это значит, что процесс считывания не допускает возможности перекрывания колонов (триплетов), и, начавшись на определенном кодоне, считывание идет непрерывно триплет за триплетом вплоть до стоп -сигналов (терминирующих кодонов ).

6. Генетический код универсален , т. е. ядерные гены всех организмов одинаковым образом кодируют информацию о белках вне зависимости от уровня организации и систематического положения этих организмов.

Существуют таблицы генетического кода для расшифровки кодонов и- РНК и построения цепочек белковых молекул.

Реакции матричного синтеза.

В живых системах встречается реакции, неизвестные в неживой природе - реакции матричного синтеза.

Термином "матрица" в технике обозначают форму, употребляемую для отливки монет, медалей, типографского шрифта: затвердевший металл в точности воспроизводит все детали формы, служившей для отливки. Матричный синтез напоминает отливку на матрице: новые молекулы синтезируются в точном соответствии с планом, заложенным в структуре уже существующих молекул.

Матричный принцип лежит в основе важнейших синтетических реакций клетки, та-ких, как синтез нуклеиновых кислот и белков. В этих реакциях обеспечивается точная, строго специфичная последовательность мономерных звеньев в синтезируемых полимерах.

Здесь происходит направленное стягивание мономеров в определенное место клетки - на молекулы, служащие матрицей, где реакция протекает. Если бы такие реакции происходили в результате случайного столкновения молекул, они протекали бы бесконечно медленно. Синтез сложных молекул на основе матричного принципа осуществляется быстро и точно. Роль матрицы в матричных реакциях играют макромолекулы нуклеиновых кислот ДНК или РНК .

Мономерные молекулы , из которых синтезируется полимер, - нуклеотиды или аминокислоты - в соответствии с принципом комплементарности располагаются и фиксируются на матрице в строго определенном, заданном порядке.

Затем происходит "сшивание" мономерных звеньев в полимерную цепь , и готовый полимер сбрасывается с матрицы.

После этого матрица готова к сборке новой полимерной молекулы. Понятно, что как на данной форме может производиться отливка только какой-то одной монеты, одной буквы, так и на данной матричной молекуле может идти "сборка" только какого-то одного полимера.

Матричный тип реакций - специфическая особенность химизма живых систем. Они являются основой фундаментального свойства всего живого - его способности к воспроизведению себе подобного.

Реакции матричного синтеза

1. Репликация ДНК - реплика́ция (от лат. replicatio - возобновление) - процесс синтеза дочерней молекулы дезоксирибонуклеиновой кислоты на матрице родительской молекулы ДНК. В ходе последующего деления материнской клетки каждая дочерняя клетка получает по одной копии молекулы ДНК, которая является идентичной ДНК исходной материнской клетки. Этот процесс обеспечивает точную передачу генетической информации из поколения в поколение. Репликацию ДНК осуществляет сложный ферментный комплекс, состоящий из 15-20 различных белков, называемый реплисомой . Материалом для синтеза служат свободные нуклеотиды, имеющиеся в цитоплазме клеток. Биологический смысл репликации заключается в точной передаче наследственной информации от материнской молекулы к дочерним, что в норме и происходит при делении соматических клеток.

Молекула ДНК состоит из двух комплементарных цепей. Эти цепи удерживаются слабыми водородными связями, способными разрываться под действием ферментов. Молекула ДНК способна к самоудвоению (репликации), причем на каждой старой половине молекулы синтезируется новая ее половина.
Кроме того, на молекуле ДНК может синтезироваться молекула и-РНК, которая затем переносит полученную от ДНК информацию к месту синтеза белка.

Передача информации и синтез белка идут по матричному принципу, сравнимому с работой печатного станка в типографии. Информация от ДНК многократно копируется. Если при копировании произойдут ошибки, то они повторятся во всех последующих копиях.

Правда, некоторые ошибки при копировании информации молекулой ДНК могут исправляться - процесс устранения ошибок называется репарацией . Первой из реакций в процессе передачи информации является репликация молекулы ДНК и синтез новых цепей ДНК.

2. Транскрипция (от лат. transcriptio - переписывание) - процесс синтеза РНК с использованием ДНК в качестве матрицы, происходящий во всех живых клетках. Другими словами, это перенос генетической информации с ДНК на РНК.

Транскрипция катализируется ферментом ДНК-зависимой РНК-полимеразой. РНК-полимераза движется по молекуле ДНК в направлении 3" → 5". Транскрипция состоит из стадий инициации, элонгации и терминации . Единицей транскрипции является оперон, фрагмент молекулы ДНК, состоящий из промотора, транскрибируемой части и терминатора . и-РНК состоит из одной цепи и синтезируется на ДНК в соответствии с правилом комплементарности при участии фермента, который активирует начало и конец синтеза молекулы и-РНК.

Готовая молекула и-РНК выходит в цитоплазму на рибосомы, где происходит синтез полипептидных цепей.

3. Трансляция (от лат. translatio - перенос, перемещение) - процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК, мРНК), осуществляемый рибосомой. Иными словами, это процесс перевода информации, со-держащейся в последовательности нуклеотидов и-РНК, в последовательность амино-кислот в полипептиде.

4. Обратная транскрипция - это процесс образования двуцепочечной ДНК на основании информации из одноцепочечной РНК. Данный процесс называется обратной транскрипцией, так как передача генетической информации при этом происходит в «обратном», относительно транскрипции, направлении. Идея обратной транскрипции вначале была очень непопулярна, так как противоречила центральной догме молекулярной биологии, которая предполагала, что ДНК транскрибируется в РНК и далее транслируется в белки.

Однако в 1970 году Темин и Балтимор независимо друг от друга открыли фермент, названный обратной транскриптазой (ревертазой) , и возможность обратной транскрипции была окончательно подтверждена. В 1975 году Темину и Балтимору была присуждена Нобелевская премия в области физиологии и медицины. Некоторые вирусы (такие как вирус иммунодефицита человека, вызывающий ВИЧ-инфекцию), имеют возможность транскрибировать РНК в ДНК. ВИЧ имеет РНК-геном, который встраивается в ДНК. В результате, ДНК вируса может быть объединена с геномом клетки-хозяина. Главный фермент, ответственный за синтез ДНК из РНК, называется ревертазой . Одной из функций ревертазы является создание комплементарной ДНК (кДНК) из вирусного генома. Ассоциированный фермент рибонуклеаза расщепляет РНК, а ревертаза синтезирует кДНК из двойной спирали ДНК. кДНК интегрируется в геном клетки-хозяина с помощью интегразы. Результатом является синтез вирусных протеинов клеткой-хозяином , которые образуют новые вирусы. В случае с ВИЧ так же программируется апоптоз (смерть клетки) Т-лимфоцитов. В иных случаях клетка может остаться распространителем вирусов.

Последовательность матричных реакций при биосинтезе белков можно представить в виде схемы.

Таким образом, биосинтез белка – это один из видов пластического обмена, в ходе которого наследственная информация, закодированная в генах ДНК, реализуется в определенную последовательность аминокислот в белковых молекулах.

Молекулы белков по существу представляют собой полипептидные цепочки , составленные из отдельных аминокислот. Но аминокислоты недостаточно активны, чтобы соединиться между собой самостоятельно. Поэтому, прежде чем соединиться друг с другом и образовать молекулу белка, аминокислоты должны активироваться . Эта активация происходит под действием особых ферментов.

В результате активирования аминокислота становится более лабильной и под действием того же фермента связывается с т-РНК . Каждой аминокислоте соответствует строго специфическая т-РНК , которая находит «свою» аминокислоту и переносит ее в рибосому.

Следовательно, в рибосому поступают различные активированные аминокислоты, соединенные со своими т-РНК . Рибосома представляет собой как бы конвейер для сборки цепочки белка из поступающих в него различных аминокислот.

Одновременно с т-РНК, на которой «сидит» своя аминокислота, в рибосому поступает «сигнал » от ДНК, которая содержится в ядре. В соответствии с этим сигналом в рибосоме синтезируется тот или иной белок.

Направляющее влияние ДНК на синтез белка осуществляется не непосредственно, а с помощью особого посредника – матричной или информационной РНК (м-РНК или и-РНК ), которая синтезируется в ядр е под влиянием ДНК, поэтому ее состав отражает состав ДНК. Молекула РНК представляет собой как бы слепок с формы ДНК. Синтезированная и-РНК поступает в рибосому и как бы передает этой структуре план - в каком порядке должны соединяться друг с другом поступившие в рибосому активированные аминокислоты, чтобы синтезировался определенный белок. Иначе, генетическая информация, закодированная в ДНК, передается на и- РНК и далее на белок .

Молекула и-РНК поступает в рибосому и прошивает ее. Тот ее отрезок, который находится в данный момент в рибосоме, определенный кодоном (триплет) , взаимо-действует совершенно специфично с подходящим к нему по строению триплетом (антикодоном) в транспортной РНК, которая принесла в рибосому аминокислоту.

Транспортная РНК со своей аминокислотой подходит к определенному кодону и-РНК и соединяется с ним; к следующему, соседнему участку и- РНК присоединяется другая т-РНК с другой аминокислотой и так до тех пор, пока не будет считана вся цепочка и-РНК, пока не нанижутся все аминокислоты в соответствующем порядке, образуя молекулу белка. А т-РНК, которая доставила аминокислоту к определенному участку полипептидной цепи, освобождается от своей аминокислоты и выходит из рибосомы.

Затем снова в цитоплазме к ней может присоединиться нужная аминокислота, и она снова перенесет ее в рибосому. В процессе синтеза белка участвует одновременно не одна, а несколько рибосом - полирибосомы.

Основные этапы передачи генетической информации:

1. Синтез на ДНК как на матрице и-РНК (транскрипция)
2. Синтез в рибосомах полипептидной цепи по программе, содержащейся в и-РНК (трансляция) .

Этапы универсальны для всех живых существ, но временные и пространственные взаимоотношения этих процессов различаются у про- и эукариотов.

У прокариот транскрипция и трансляция могут осуществляться одновременно, поскольку ДНК находится в цитоплазме. У эукариот транскрипция и трансляция строго разделены в пространстве и времени: синтез различных РНК происходит в ядре, после чего молекулы РНК должны покинуть пределы ядра, пройдя через ядерную мембрану. Затем в цитоплазме РНК транспортируются к месту синтеза белка.

Под генетическим кодом принято понимать такую систему знаков, обозначающих последовательное расположение соединений нуклеотидов в ДНКа и РНКа, которая соответствует другой знаковой системе, отображающей последовательность аминокислотных соединений в молекуле белка.

Это важно!

Когда учёным удалось изучить свойства генетического кода, одним из главных была признана универсальность. Да, как ни странно это звучит, все объединяет один, универсальный, общий генетический код. Формировался он на протяжении большого временного промежутка, и процесс закончился около 3,5 миллиардов лет назад. Следовательно, в структуре кода можно проследить следы его эволюции, от момента зарождения до сегодняшнего дня.

Когда говорится о последовательности расположения элементов в генетическом коде, имеется в виду, что она далеко не хаотична, а имеет строго определённый порядок. И это тоже во многом определяет свойства генетического кода. Это равнозначно расположению букв и слогов в словах. Стоит нарушить привычный порядок, и большинство того, что мы будем читать на книжных или газетных страницах, превратится в нелепую абракадабру.

Основные свойства генетического кода

Обычно код несёт в себе какую-либо информацию, зашифрованную особым образом. Для того чтобы расшифровать кода, необходимо знать отличительные особенности.

Итак, основные свойства генетического кода - это:

  • триплетность;
  • вырожденность или избыточность;
  • однозначность;
  • непрерывность;
  • уже указанная выше универсальность.

Остановимся подробнее на каждом свойстве.

1. Триплетность

Это когда три соединения нуклеотидов образуют последовательную цепочку внутри молекулы (т.е. ДНК или же РНК). В результате создаётся соединение триплета или кодирует одну из аминокислот, место её нахождения в цепи пептидов.

Различают кодоны (они же кодовые слова!) по их последовательности соединения и по типу тех азотистых соединений (нуклеотидов), которые входят в их состав.

В генетике принято выделять 64 кодоновых типа. Они могут образовывать комбинации из четырёх типов нуклеотидов по 3 в каждом. Это равносильно возведению числа 4 в третью степень. Таким образом, возможно образование 64-х нуклеотидных комбинаций.

2. Избыточность генетического кода

Это свойство прослеживается тогда, когда для шифрования одной аминокислоты требуется несколько кодонов, обычно в пределах 2-6. И только и триптофана можно кодировать с помощью одного триплета.

3. Однозначность

Она входит в свойства генетического кода как показатель здоровой генной наследственности. Например, о хорошем состоянии крови, о нормальном гемоглобине может рассказать медикам стоящий на шестом месте в цепочке триплет ГАА. Именно он несёт информацию о гемоглобине, и им же кодируется А если человек болен анемией, один из нуклеотидов заменяется на другую букву кода - У, что и является сигналом заболевания.

4. Непрерывность

При записи этого свойства генетического кода следует помнить, что кодоны, как звенья цепочки, располагаются не на расстоянии, а в прямой близости, друг за другом в нуклеиновой кислотной цепи, и цепь эта не прерывается - в ней нет начала или конца.

5. Универсальность

Никогда не следует забывать, что всё сущее на Земле объединено общим генетическим кодом. И потому у примата и человека, у насекомого и птицы, столетнего баобаба и едва проклюнувшейся из-под земли травинки одинаковыми триплетами кодируются схожие аминокислоты.

Именно в генах заложена основная информация о свойствах того или иного организма, своего рода программа, которую организм получает в наследство от живших ранее и которая существует как генетический код.

Классификация генов

1)По характеру взаимодействия в аллельной паре:

Доминантный (ген, способный подавлять проявление аллельного ему рецессивного гена); - рецессивный (ген, проявление которого подавлено аллельным ему доминантным геном).

2)Функциональная классификация:

2) Генетический код - это определенные сочетания нуклеотидов и последовательность их расположения в молекуле ДНК. Это свойственный всем живым организмам способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов.

В ДНК используется четыре нуклеотида - аденин (А), гуанин (G), цитозин (С), тимин (T), которые в русскоязычной литературе обозначаются буквами А, Г, Т и Ц. Эти буквы составляют алфавит генетического кода. В РНК используются те же нуклеотиды, за исключением тимина, который заменён похожим нуклеотидом - урацилом, который обозначается буквой U (У в русскоязычной литературе). В молекулах ДНК и РНК нуклеотиды выстраиваются в цепочки и, таким образом, получаются последовательности генетических букв.

Генетический код

Для построения белков в природе используется 20 различных аминокислот. Каждый белок представляет собой цепочку или несколько цепочек аминокислот в строго определённой последовательности. Эта последовательность определяет строение белка, а следовательно все его биологические свойства. Набор аминокиcлот также универсален для почти всех живых организмов.

Реализация генетической информации в живых клетках (то есть синтез белка, кодируемого геном) осуществляется при помощи двух матричных процессов: транскрипции (то есть синтеза иРНК на матрице ДНК) и трансляции генетического кода в аминокислотную последовательность (синтез полипептидной цепи на матрице иРНК). Для кодирования 20 аминокислот, а также сигнала «стоп», означающего конец белковой последовательности, достаточно трёх последовательных нуклеотидов. Набор из трёх нуклеотидов называется триплетом. Принятые сокращения, соответствующие аминокислотам и кодонам, изображены на рисунке.

Свойства генетического кода

1. Триплетность - значащей единицей кода является сочетание трех нуклеотидов (триплет, или кодон).

2. Непрерывность - между триплетами нет знаков препинания, то есть информация считывается непрерывно.

3. Дискретность - один и тот же нуклеотид не может входить одновременно в состав двух или болеетриплетов.

4. Специфичность - определенный кодон соответствует только одной аминокислоте.

5. Вырожденность (избыточность) - одной и той же аминокислоте может соответствовать несколько кодонов.

6. Универсальность - генетический код работает одинаково в организмах разного уровня сложности - от вирусов до человека. (на этом основаны методы генной инженерии)

3) транскрипция - процесс синтеза РНК с использованием ДНК в качестве матрицы, происходящий во всех живых клетках. Другими словами, это перенос генетической информации с ДНК на РНК.

Транскрипция катализируется ферментом ДНК-зависимой РНК-полимеразой. Процесс синтеза РНК протекает в направлении от 5"- к 3"- концу, то есть по матричной цепи ДНК РНК-полимераза движется в направлении 3"->5"

Транскрипция состоит из стадий инициации, элонгации и терминации.

Инициация транскрипции - сложный процесс, зависящий от последовательности ДНК вблизи транскрибируемой последовательности (а у эукариот также и от более далеких участков генома - энхансеров и сайленсеров) и от наличия или отсутствия различных белковых факторов.

Элонгация - продолжается дальнейшее расплетение ДНК и синтез РНК по кодирующей цепи. он равно как и синтез ДНК осуществляется в направлении 5-3

Терминация - как только полимераза достигает терминатора, она немедленно отщепляется от ДНК, локальный гибрид ДНК - РНК разрушается и новосинтезированная РНК траспортируется из ядра в цитоплазму на этом транскрипция завершается.

Процессинг - совокупность реакций, ведущих к превращению первичных продуктов транскрипции и трансляции в функционирующие молекулы. П. подвергаются функционально неактивные молекулы-предшественники разл. рибонуклеиновых к-т (тРНК, рРНК, мРНК) и мн. белков.

В процессе синтеза катаболических ферментов (расщепляющих суб-страты) у прокариот происходит индуцируемый синтез ферментов. Это дает клетке возможность приспосабливаться к условиям окружающей среды и экономить энергию, прекращая синтез соответствующего фермента, если потребность в нем исчезает.
Для индукции синтеза катаболических ферментов обязательны следующие условия:

1. Фермент синтезируется только тогда, когда расщепление соответствующего субстрата необходимо для клетки.
2. Концентрация субстрата в среде должна превысить определенный уровень, прежде чем соответствующий фермент сможет образоваться.
Наиболее хорошо изучен механизм регуляции экспрессии генов у кишечной палочки на примере lac-оперона, контролирующего синтез трех катаболических ферментов, расщепляющих лактозу. Если в клетке много глюкозы и мало лактозы, промотор остается неактивным, а на операторе находится белок репрессор - блокируется транскрипция lac-оперона. Когда количество глюкозы в среде, а следовательно и в клетке, уменьшается, а лактозы увеличивается, происходят следующие события: количество циклического аденозинмонофосфата увеличивается, он связывается с САР -белком - этот комплекс активирует промотор, с которым соединяется РНК-полимераза; в это же время избыток лактозы соединяется с белком-репрессором и освобождает от него оператор - путь для РНК-полимеразы открыт, начинается транскрипция структурных генов lac -оперона. Лактоза выступает в качестве индуктора синтеза тех ферментов, которые её расщепляют.

5) Регуляция экспрессии генов у эукариот протекает намного сложнее. Различные типы клеток многоклеточного эукариотического организма синтезируют ряд одинаковых белков и в то же время они отличаются друг от друга набором белков, специфичных для клеток данного типа. Уровень продукции зависит от типа клеток, а также от стадии развития организма. Регуляция экспрессии генов осуществляется на уровне клетки и на уровне организма. Гены эукариотических клеток делятся на два основных вида: первый определяет универсальность клеточных функций, второй – детерминирует (определяет) специализированные клеточные функции. Функции генов первой группы прояв­ляются во всех клетках . Для осуществления дифференцированных функций специализированные клетки должны экспрессировать определенный набор генов.
Хромосомы, гены и опероны эукариотических клеток имеют ряд структурно-функциональных особенностей, что объясняет сложность экспрессии генов.
1. Опероны эукариотических клеток имеют несколько генов - регуляторов, которые могут располагаться в разных хромосомах.
2. Структурные гены, контролирующие синтез ферментов одного биохимического процесса, могут быть сосредоточены в нескольких оперонах, расположенных не только в одной молекуле ДНК, но и в нескольких.
3. Сложная последовательность молекулы ДНК. Имеются информативные и неинформативные участки, уникальные и многократно повторяющиеся информативные последовательности нуклеотидов.
4. Эукариотические гены состоят из экзонов и интронов, причем созревание и-РНК сопровождается вырезанием интронов из соответствующих первичных РНК-транскриптов (про-и-РНК), т.е. сплайсингом.
5. Процесс транскрипции генов зависит от состояния хроматина. Локальная компактизация ДНК полностью блокирует синтез РНК.
6. Транскрипция в эукариотических клетках не всегда сопряжена с трансляцией. Синтезированная и-РНК может длительное время сохраняться в виде информосом. Транскрипция и трансляция проис­ходят в разных компартментах.
7. Некоторые гены эукариот имеют непостоянную локализа­цию (лабильные гены или транспозоны).
8. Методы молекулярной биологии выявили тормозящее действие белков-гистонов на синтез и-РНК.
9. В процессе развития и дифференцировки органов активность генов зависит от гормонов, циркулирующих в организме и вызывающих специфические реакции в определенных клетках. У млекопитаю­щих важное значение имеет действие половых гормонов.
10. У эукариот на каждом этапе онтогенеза экспрессировано 5-10% генов, остальные должны быть заблокированы.

6) репарация генетического материала

Репарация генетическая - процесс устранения генетических повреждений и восстановления наследственного аппарата, протекающий в клетках живых организмов под действием специальных ферментов. Способность клеток к репарации генетических повреждений впервые была обнаружена в 1949 году американским генетиком А.Кельнером.Репарация - особая функция клеток, заключающаяся в способности исправлять химические повреждения и разрывы в молекулах ДНК, повреждённой при нормальном биосинтезе ДНК в клетке или в результате воздействия физических или химических агентов. Осуществляется специальными ферментными системами клетки. Ряд наследственных болезней (напр., пигментная ксеродерма) связан с нарушениями систем репарации.

виды репараций:

Прямая репарация наиболее простой путь устранения повреждений в ДНК, в котором обычно задействованы специфические ферменты, способные быстро (как правило, в одну стадию) устранять соответствующее повреждение, восстанавливая исходную структуру нуклеотидов. Так действует, например, O6-метилгуанин-ДНК-метилтрансфераза, которая снимает метильную группу с азотистого основания на один из собственных остатков цистеина.

Все морфологические, анатомические и функциональные особенности любой живой клетки и организма в целом определяются структурой специфических белков, входящих в состав клеток. Способность к синтезу только строго определенных белков является наследственным свойством организмов. Последовательность расположения аминокислот в полипептидной цепочке - первичная структура белка, от которой зависят и его биологические свойства, - определяется последовательностью нуклеотидов в молекулах ДНК. Последняя и является хранителем наследственной информации в клетках.

Последовательность нуклеотидов в полинуклеотидной цепи ДНК очень специфична для каждой клетки и представляет собой генетический код , посредством которого записана информация о синтезе определенных белков. Это значит, что в ДНК каждое сообщение закодировано специфической последовательностью из четырех знаков - А, Г, Т, Ц, подобно тому, как письменное сообщение кодируется знаками (буквами) алфавита или азбуки Морзе. Генетический код является триплетным , т. е. каждая аминокислота кодируется известным сочетанием из трех расположенных рядом нуклеотидов, называемых кодоном . Нетрудно подсчитать, что число возможных комбинаций из четырех нуклеотидов по три составит 64.

Выяснилось, что код является множественным или «вырожденным», т. е. одна и та же аминокислота может кодироваться несколькими кодонами-триплетами (от 2 до б), в то время как каждый триплет кодирует только одну аминокислоту, например, на языке матричной РНК:

  • фенилаланин - УУУ, УУЦ;
  • изолейцин - АУУ, АУЦ, АУА;
  • пролин - ЦЦУ, ЦЦЦ, ЦЦА, ЦЦГ;
  • серин — УЦУ, УЦЦ, УЦА, УЦГ, АГУ, АГЦ.

Помимо этого, код является неперекрывающимся , т. с. один и тот же нуклеотид не может входить одновременно в состав двух соседних триплетов. И наконец, этот код без запятых, что означает, что если произойдет выпадение одного нуклеотида, то при считывании его место займет ближайший нуклеотид из соседнего кодона, из-за чего изменится весь порядок считывания. Поэтому правильное считывание кода с информационной РНК обеспечивается тэлько в том случае, если он считывается со строго определенного пункта. Стартовыми кодонами в молекуле и РНК являются триплеты АУГ и ГУ Г.

Нуклеотидный код универсален для всех живых организмов и вирусов: одинаковые триплеты кодируют одинаковые аминокислоты . Это открытие представляет собой серьезный шаг на пути к более глубокому познанию сущности живой материи, ибо универсальность генетического кода свидетельствует о единстве происхождения всех живых организмов. К настоящему времени расшифрованы триплеты для всех 20 аминокислот, входящих в состав природных белков. Следовательно, зная порядок расположения триплетов в молекуле ДНК (генетический код), можно установить порядок расположения аминокислот в белке.

В одной молекуле ДНК может быть закодирована последовательность аминокислот для многих белков. Функциональный отрезок молекулы ДНК, несущий в себе информацию о структуре одного полипептида или молекулы РНК, называется геном . Различают структурные гены, в которых закодирована информация для синтеза структурных и ферментных белков, и гены с информацией для синтеза тРНК, рРНК и др.