Озонирование бензола. Озон - общие сведения. Получение и применение бензола

Молекула органического соединения и молекула простого или сложного вещества соединяются в новую молекулу: Такие реакции обозначаются А - addition [присоединение]. Например, бромирование пропена: К реакциям присоединения относятся также реакции полимеризации: Например, образование полиэтилена:...
(ОРГАНИЧЕСКАЯ ХИМИЯ)
  • Реакции присоединения
    Реакции присоединения по двойной связи в общем виде можно представить следующим образом: По этой схеме к двойным углерод-углеродным связям могут присоединяться: водород (Н2), галогены (Cl2, Br2, С1Вг, СП), вода (Н20), галогеноводороды (НС1, HBr, HI), серная кислота (H2S04), кислород (02) и г.д. Большая...
    (ОРГАНИЧЕСКАЯ ХИМИЯ)
  • Реакция озонирования Гарриеса
    Озон 03 легко присоединяется по месту двойной связи с образованием циклических перекисей - озопидов : Озониды очень неустойчивы, легко взрываются. Обычно их не выделяют, а сразу после получения разлагают водой: Перекись водорода окисляет образующиеся альдегиды до карбоновых кислот: Озонирование...
    (ОРГАНИЧЕСКАЯ ХИМИЯ)
  • Строение бензола
    Сопоставляя все имеющиеся в настоящее время сведения, относящиеся к бензолу и его гомологам, строение бензола можно представить следующим образом. Все атомы углерода в бензоле находятся в состоянии sp2- гибридизации. Каждый из них образует три обычные с-связи (две связи С-С и одну С-Н с углом...
    (ОРГАНИЧЕСКАЯ ХИМИЯ)
  • Парциальное газофазное окисление метан-углеводородных смесей и гомологов метана
    Реальные природные газы, в том числе используемые в химических процессах, содержат примеси различных углеводородов, в основном гомологов метана. Поскольку из-за большого различия в прочности химических связей даже ближайшие гомологи метана сильно отличаются от него по реакционной способности и ряду других...
  • Кинетический анализ парциального окисления метана и его гомологов в синтез-газ
    В последнее время наряду с каталитическими методами окислительной конверсии метана в синтез-газ в ряде промышленных процессов, особенно в небольших компактных установках по получению водорода, стало применяться его газофазное парциальное окисление. Однако часто применяемые термодинамические методы расчета...
    (ОРГАНИЧЕСКАЯ ХИМИЯ: ОКИСЛИТЕЛЬНЫЕ ПРЕВРАЩЕНИЯ МЕТАНА)
  • Всероссийская олимпиада школьников по химии - 2004 года

    "ЗАДАЧИ ПО ВЫБОРУ"

    ФИЗИЧЕСКАЯ ХИМИЯ

    Задача 1.

    "Как простодушно сказали бы в позапрошлом -
    да, уже позапрошлом – веке."
    (Бахыт Кенжеев)

    "В начале 1880 года Виктор Мейер начал весьма интересные опыты над плотностями пара галоидов при весьма высоких температурах. Опыты были затем повторены Крафтсом. Результат их тот, что плотности паров галоидов, которыя представляются нормальными для значительных интервалов температуры, делаются меньшими по мере возвышения температуры, различно для различных галоидов.

    Температура Плотн. пара хлора Плотн. пара брома Плотн. пара иода
    Ниже 440 о 2,45 5,52 8,78
    440 о норм. норм. 8,72
    900 о норм. норм. 8,11
    1200 о норм. 4,5 6,07
    1400 о - 1500 о 2,02 3,5 5,31

    Предполагая, что наблюдаемое уменьшение плотностей пара галоидов не зависит от значительного изменения коэффициентов расширения газов при указанных температурах, приведенные данные могут быть объяснены…"
    ("Очерк развития химических воззрений" Н. Меншуткина, СПб., 1888. стр.301-302)

    1. Чем может быть объяснено столь существенное изменение "плотности пара" для галогенов?
    2. Оцените погрешность определения "плотности пара" (относительные %).
    3. Рассчитайте состав "пара" для иода при указанных температурах (мольные доли).
    4. Рассчитайте энергию связи I - I (кДж/моль).
    5. Определите температуру плавления и кипения иода (о С) и рассчитайте энергию решетки иода, если давление паров над иодом составляет 1 мм рт.ст (133,32 Па) при 43,7 о С; 10 мм рт. ст. при 77,0 о; 100 мм рт.ст. при 122,4 о; 400 мм рт.ст. при 162,8 о.

    Задача 2.

    HX - одна из самых сильных органических кислот может быть получена по схеме:

    Информация о составе представленных на схеме соединений:

    Вещество

    В последнее время возрос интерес к использованию молекулярного фтора в растворителях. При этом удается контролировать окислительную активность F 2 путем введения в раствор различных веществ. Кислота HX относится к подобным соединениям. Предполагаемые процессы с ее участием:

    Уравнение Нернста для молекулярного фтора имеет вид:

    Используемые растворители(solv): CH 3 CO 2 H, HCO 2 H, CF 3 CH 2 OH, CH 3 OH, CF 3 CO 2 H.

    1. Определите неизвестные вещества на схеме и напишите уравнения реакций.

    2. Полагая, что общие концентрации фтора(C 1) и кислоты(С 2) постоянны (С 1 <0,5С 2):
    а) Выразите E 0 через E 0 (F 2 /F -) и K a (HF). (Положим E 0 =E 0 (F 2 ,H + /HF), E=E(F 2 ,H + /HF).)
    б) Выразите E как функцию от C 2 и С 1 , если рН(С 2 , С 1 , solv) известен.

    (Допустимые приближения позволяют обойтись без K 1 -K 3 .)

    3. К раствору(п2) прибавили(С 3): а) BF 3 (C 3 <0,5C 1); б) NaX(C 3 < 4.Дайте объяснение тому, что K 1 и K 2 – слабо зависят от K a (solv), в то время как K 3 сильно возрастает при увеличении K a (solv). Расположите представленные растворители в ряд по увеличению K a ; как меняется E(С 2 ,С 1 =сonst) в этом ряду?
    5.Подходящий растворитель поддерживает постоянство потенциала в процессе пропускания фтора в раствор и образует с F 2 только легко отделимые от целевого продукта соединения. Предложите подходящий растворитель из списка, обоснуйте.
    6.Предложите один способ получения F 2 в лаборатории, не прибегая к электролизу.
    7.Почему нельзя точно определить потенциал фтора в процессе эксперимента?

    Задача 3.

    Озонирование бензола

    Реакцию озонирования используют в органической химии для синтеза различных классов соединений и установления строения непредельных соединений.
    Озонирование бензола протекает в метилхлориде при –80 o С. Эту реакцию можно описать кинетической схемой:

    1) Напишите структурные формулы озонидов А 1 , А 2 , А 3 . Какое вещество образуется при восстановлении A 3 цинком?
    2) Другой способ получения озонидов – обезвоживание дигидроксиперекисей вида

    фосфорным ангидридом. Напишите схемы получения моно-, ди- и полиозонида из указанной дигидроперекиси.
    Одна из качественных реакций на перекисные соединения самого разнообразного строения – взаимодействие их эфирных растворов с раствором сульфата титанила в 60%-ной серной кислоте.
    3) Каков аналитический сигнал и чем он обусловлен?
    Рассмотрим приведенную выше кинетическую схему. Предположим, что озон взят в небольшом избытке по сравнению с суммарным уравнением.
    4) а) На одном графике изобразите кривые зависимости концентраций веществ А 1 , А 2 , А 3 от времени в предположении, что k 1 k 2 k 3 .
    б) На одном графике изобразите зависимости концентрации вещества А 1 от времени в двух случаях: 1) k 1 << k 2 ; 2) k 1 k 2 . в) Как вы считаете, какое из двух приближений – (б1) или (б2) – больше соответствует действительности? Почему?
    г) Выразите скорость образования A 3 через концентрации озона и бензола при условии, что концентрации интермедиатов А 1 и А 2 стационарны. Чему равен общий порядок реакции?
    Концентрацию озона в растворе можно поддерживать постоянной, непрерывно пропуская через раствор озоно-кислородную смесь. Рассмотрим кинетику реакции в этих условиях.

    5) а) Выразите скорость образования A 3 через концентрации озона и бензола при условии, что концентрации А 1 и А 2 стационарны. Чему равен общий порядок реакции?
    б) Во сколько раз изменится время полупревращения бензола при увеличении его начальной концентрации в 2 раза?
    в) Решите кинетическое уравнение из (5а) и найдите зависимость концентрации продукта A 3 от времени. Начальные концентрации бензола и озона обозначьте 0 и 0 .

    Задача 4.

    Пероксид бензоила (ПБ) и динитрил 2,2"-диметил-2,2"-азодипропановой кислоты (2,2"-азо-бис-изобутиронитрил, АИБН) – стандартные инициаторы радикально-цепных процессов, легко распадающиеся гомолитически уже при небольшом повышении температуры. Энергия активации распада в инертных растворителях составляет 129 кДж/моль для ПБ и 130 кДж/моль для АИБН, а предэкспонт в уравнении Аррениуса (k = A e –E a/RT ) А = 10 14,5 c –1 для ПБ и 10 15,0 c –1 для АИБН. Распад идет по 1-му порядку.

    Вопросы и задания.

    1. Запишите формулы ПБ и АИБН и уравнения реакций их распада в инертном растворителе. Какие продукты могут при этом образоваться? Назовите их.
    2. Связи C–N и N=N в азосоединениях достаточно прочные (295 и 420 кДж/моль соответственно). Почему же тогда АИБН легко образует радикалы при нагревании?
    3. В одном из опытов при разложении синего раствора АИБН в течение 1-й минуты выделилось 0,5 мл газа (измеренного при комнатной температуре и давлении 735 мм), а после окончания реакции выделилось 1,250 л этого газа, измеренного при тех же условиях. Рассчитайте константу скорости распада АИБН в условиях опыта (время для нее указывать в секундах).
    4. Оцените время, за которое АИБН в растворе распадется на 0,1% при температуре 25 о С, а также время полураспада. При какой температуре АИБН распадется на 50% за 5 часов?
    5. Оцените тепловой эффект распада АИБН. Возможно ли его взрывное разложение и если да, то при каких обстоятельствах? Энергия разрыва тройной связи в молекуле азота 945 кДж/моль; энергию связи С–С принять равной 340 кДж/моль.
    6. В одной из работ измеряли начальную скорость распада ПБ в кипящем бензоле. Если по полученным данным рассчитать константу скорости распада в предположении о 1-м порядке реакции, то окажется, что рассчитанная таким образом константа зависит от начальной концентрации ПБ:

    Для объяснения этих результатов было предположено, что параллельно может идти бимолекулярная реакция распада ПБ. Рассчитайте по данным эксперимента истинную константу скорости мономолекулярного распада ПБ (рекомендуется использовать графический метод).
    7. Когда разложение АИБН проводили в ксилоле при 108 о С в присутствии 2,6-диметил-п -бензохинона, спектр электронного парамагнитного резонанса (ЭПР) полученного раствора показал присутствие стабильных свободных радикалов; 7 равноотстоящих линий в спектре с расщеплением 0,573 мТ (миллитесла) свидетельствовали о присутствии в радикале 6 эквивалентных протонов, а расщепление каждой линии на три (с расстоянием между ними 0,137 мТ) – о присутствии двух эквивалентных протонов (T.L.Simandi и др., European Polymer Journal, 1989, том 25, c.501–507). По этим данным изобразите структуру образующегося радикала и подтвердите ее данными ЭПР (расщепление в спектре пропорционально плотности неспаренного электрона на данном атоме). Объясните стабильность образовавшихся радикалов. Как вы думаете, почему авторы опубликовали статью в указанном журнале?
    Указание. Зависимость концентрации от времени для реакции 1-го порядка: с = с о e –kt или ln(c o /c ) = kt . Газовая постоянная R = 8,31 Дж/(моль К).


    ХИМИЯ И ЖИЗНЬ

    Задача 1.

    Галичское озеро (Костромская обл., см. карту) имеет изрядно заиленное дно, 25 км в длину, 5 км в ширину, среднюю глубину 1.5 м, кратность водообмена ~ 1 раз в год. В озеро впадают несколько рек, из которых самые многоводные (если так можно говорить о тех жалких ручейках) – Средняя и Чёлсма. Выпадает из озера р. Вёкса. На озере стоит г. Галич (20 тыс. жителей, работают автокрановый завод, кожзавод, хлебозавод, обувная и швейная фабрики).
    В четырех точках (см. карту) были отобраны пробы воды. Пробы отбирались с 3 по 8 августа 2003 года. Результаты анализов приведены в таблице.

    Точка
    Температура
    рН
    Прозрачность, см
    Цветность, град
    Щелочность общая, мМ
    Щелочность свободная, мМ
    Жесткость (Ca 2+ + Mg 2+), мМ
    Кальций, мМ
    Хлориды, мМ
    О 2 , % от насыщения

    Примечание: щелочность свободная – концентрация оснований, дающих рН>8.2, щелочность общая – концентрация всех оснований, которые можно оттитровать соляной кислотой. Разница между общей и свободной щелочностью, как правило, обусловлена гидрокарбонатами.
    Из результатов видно, что, во-первых, рН воды в озере аномально высок, а во-вторых, концентрация солей в озере примерно в 3 раза меньше, чем в питающих его реках. Обоим фактам было предложено два объяснения. Первое: жители города активно стирают белье, что приводит к попаданию в озеро карбоната и фосфата натрия, защелачиванию воды и связыванию кальция с магнием. Второе: кожзавод сбрасывает в озеро стоки, содержащие известь.

    1.Приведите уравнения реакций, приводящие к снижению концентраций катионов и анионов в озере по сравнению с питающими озеро реками по первой и второй гипотезе. Уравнения записать в ионной форме.
    2.Является ли снижение концентрации солей в Галичском озере по сравнению с питающими его реками локальным (только в черте города) или по всему озеру? Ответ обоснуйте одним предложением.
    3.Какие факты не укладываются в первую гипотезу повышения рН?
    4.Какие факты не укладываются во вторую гипотезу повышения рН?
    5.Какие факты не укладываются во вторую гипотезу снижения концентрации солей?
    Существует также гипотеза, что снижение концентрации солей в озере по сравнению с питающими его реками обусловлено естественными причинами.
    6.Какая это может быть причина? Напишите соответствующее уравнение реакции.
    7.Как анализ ила может подтвердить или опровергнуть эту гипотезу?
    8.Оцените толщину слоя этих веществ, откладывающегося за год, если считать, что отлагаются только они, а их плотность примерно равна 2000 г/дм 3 ?

    Для справок: K a (H 2 O+CO 2) = 4.5? 10 -7 , K a (HCO 3 -) = 4.8? 10 -11 , K a (H 2 РO 4 -) = 6.2? 10 -8 , K a (HРO 4 2-) = 5.0? 10 -13 , ПР(CaCO 3) = 4? 10 -9 , ПР(MgCO 3) = 2? 10 -5 , ПР(Ca 3 (PO 4) 2) = 2? 10 -29 .

    Задача 2.

    Насекомые слишком малы, чтобы искать себе пару в окружающем мире с помощью глаз, как это обычно делает человек. Для этой цели они выделяют специальные вещества – половые аттрактанты, или феромоны. Несколько миллиграммов феромона, выделенного самкой какой-нибудь бабочки, достаточно для того, чтобы привлечь сотни самцов с расстояния в десятки километров. При этом незначительные изменения в структуре феромона (положение или стереоизомерия двойной С=С связи, использование другого стереоизомера хиральной молекулы и т.д.) может привести к привлечению насекомых совсем другого вида или к отпугиванию особей своего вида.
    Известно, что самки оливковой мухи Bacroceraoleae привлекают самцов с помощью соединения А , а самцы самок – с помощью соединения Б . При обработке этих соединений разбавленным раствором кислоты образуется одно и то же вещество В , про которое известно следующее:
    а) оно содержит 27.6% кислорода и 62.1% углерода, а при обработке пентабромидом фосфора превращается в соединение Г, содержащее 71.75% брома;
    б) при нагревании в присутствии каталитических количеств пара -толуолсульфокислоты (TsOH) легко превращается в смесь соединений А и Б ;
    в) в результате осуществления цепочки превращений:

    его можно трансформировать в соединение З , которое при взаимодействии с одним эквивалентом реактива Гриньяра образует смесь двух спиртов.
    Определите возможные структуры соединений А – З и напишите уравнения приведенных здесь реакций

    Задача 3.

    Иммобилизованные ферменты

    Ферменты - это биологические катализаторы белковой природы. Для использования ферментов в различных биотехнологических процессах нередко необходимо закрепить (иммобилизовать) фермент на подходящем нерастворимом носителе (исходный фермент, который подвергают иммобилизации, мы будем называть нативным ферментом).
    А. Получение иммобилизованных ферментов.
    Для иммобилизации ферментов обычно используют носители, содержащие амино-, гидроксильные или карбоксильные группы, которые не отличаются высокой реакционной способностью при физиологических условиях. Поэтому при образовании ковалентной связи фермент-носитель, последний необходимо сначала активировать. Одним из типов активирующих реагентов являются диальдегиды, например, янтарный

    OHC-(CH 2) 2 -CHO.

    1. Напишите реакции, происходящие при действии янтарного альдегида на поливиниловый спирт в кислой среде. Для обозначения носителя здесь и далее используйте следующий значок:

    2. Напишите уравнение побочной реакции между поливиниловым спиртом и янтарным альдегидом, которая снижает выход фермента, ковалентно связанного с носителем.
    3. Напишите реакцию взаимодействия носителя, активированного янтарным альдегидом, с ферментом (рН = 8). В схеме укажите функциональную группу фермента, которая будет вступать во взаимодействие. Для обозначения фермента используйте значок:

    4. По боковым группам остатков каких аминокислот будет протекать реакция? Приведите тривиальные названия и формулы боковых радикалов данных аминокислот.
    5. Какая еще группа фермента, помимо указанных в ответе на вопрос 4, может вступать во взаимодействие с активированным носителем?
    6. Укажите области рН, в которых образующаяся связь фермент-носитель:
    а) стабильна
    б) нестабильна
    Для повышения устойчивости связи фермент-носитель систему, получившуюся в результате реакции, описанной в вопросе 1, обрабатывают боргидридом натрия.
    7. Приведите схему данной реакции. где V max = k 2 [E] 0 и K M = (k 2 + k -1)/ k 1

    Иммобилизация может влиять на значения как каталитической константы k 2 , так и константы Михаэлиса K M , которая характеризует эффективность связывания фермента с данным субстратом. Катализ иммобилизованными ферментами может протекать в двух режимах:
    кинетическом, при котором наблюдаемая скорость определяется каталитическими свойствами самого фермента;
    диффузионном, при котором наблюдаемая скорость реакции контролируется диффузией (то есть, определяется скоростью подачи субстрата к ферменту).

    Рассмотрим систему с иммобилизованным ферментом, в которой смена режима наблюдается при концентрации субстрата, равной [S] 0,экс.
    8. Изобразите на графике в так называемых двойных обратных координатах (1/v от 1/[S] 0) вид зависимости для данной системы в интервале концентраций субстрата от [S] 0,экс /2 до 10[S] 0,экс. Отметьте на оси абсцисс точки, соответствующие концентрациям субстрата [S] 0,экс /2, [S] 0,экс и 10[S] 0,экс. Зависимость, соответствующую кинетическому режиму, отметьте цифрой "1", а диффузионному режиму – цифрой "2".
    9. Укажите, чему равны длины отрезков, отсекаемых на оси абсцисс и оси ординат в двойных обратных координатах продолжением зависимости для случая кинетического режима (график из ответа на вопрос 8). Приведите вычисления.
    Иммобилизация на полиэлектролитных носителях может влиять на распределение в системе протонов, что приводит к изменению зависимости каталитической активности фермента (и, следовательно, скорости реакции) от рН (в дальнейшем такую зависимость мы будем называть рН-профилем). Пусть для некоторого нативного фермента рН-профиль имеет классический колоколообразный вид (см. ниже).

    10. Представьте в координатах (v от рН) рН-профили, соответствующие нативному ферменту (обозначьте каждую ветвь цифрой 1), тому же ферменту, иммобилизованному на полианионном носителе (обозначьте каждую ветвь цифрой 2), и тому же ферменту, иммобилизованному на поликатионном носителе (обозначьте каждую ветвь цифрой 3). Допустите, что иммобилизация не влияет:
    а) на величину скорости ферментативной реакции в рН-оптимуме (наивысшая точка колокола);
    б) на форму рН-профиля.

    4(СНО) 2 + 2 HN О 3 → 4СНОСООН + N 2 O + Н 2 О. (1.5)

    Для инициирования начала реакции необходимо присутствие нитрата либо нитрита натрия, при взаимодействии которого с азотной кислотой выделяется необходимое для начала процесса количество закиси азота. Таким образом, нитрат или нитрит натрия играет роль катализатора. В ходе процесса окисления добавки азотнокислого натрия (либо другого соединения) не требуется, так как достаточное количество закиси азота образуется в результате взаимодействия ацетальдегида с азотной кислотой.

    В качестве высокоселективного катализатора для превращения ацетальдегида в глиоксаль используется диоксид селена SeO 2 . В присутствии селенсодержащего катализатора наблюдается увеличение конверсии ацетальдегида с 4 до 10%. Однако регенерация SeO 2 представляет достаточно серьезную проблему, вследствие того, что в ходе процесса окисления образуются трудно восстанавливаемые органические соединения селена. Для повышения выхода целевого продукта в реакционную смесь добавляют муравьиную и уксусную кислоты в мольном соотношении с азотной кислотой от 0,5 до 1,16. Это позволяет увеличить выход глиоксаля до 50%. Следует отметить, что для данной реакции оптимальный температурный диапазон лежит в узких пределах 45 ÷ 48 о С. Дальнейшее увеличение температуры приводит к заметному уменьшению выхода целевого продукта.

    В качестве катализаторов предложены соли металлов I группы Периодической системы: нитраты натрия, лития, серебра. Получаемая смесь продуктов представляет собой водный раствор альдегидов, уксусной кислоты, азотной и малого количества азотистой кислоты. Альдегидные соединения включают Глиоксаль, ацетальдегид и глиоксалевую кислоту.

    Недостаток этого метода получения - периодичность процесса. Кроме того, важнейшей проблемой является очистка полученной смеси разнообразных продуктов. Для получения товарного продукта (40%-ный водный раствор глиоксаля) необходимо удалять из смеси азотную и уксусную кислоты, например, методом ионного обмена. Выделение глиоксаля из продуктов реакции стандартными методами невозможно. В мировой практике данная технология получения глиоксаля применяется очень ограниченно в связи с большими выбросами оксидов азота в атмосферу, которые разрушают озоновый слой, защищающий земную поверхность от УФ – излучения.

    1.2.2 Озонирование бензола


    Существуют разработки метода синтеза глиоксаля озонированием бензола эквивалентным количеством озона с дальнейшим гидрированием получаемых продуктов для получения глиоксаля. Бензол присоединяет озон, образуя триозонид - чрезвычайно взрывчатое вещество. Под действием воды озонид разлагается с образованием трех молекул глиоксаля по схеме :

    Однако из-за высокой себестоимости получения озона и чрезвычайной взрывоопасности этот метод не представляет практической ценности.

    1.2.3 Окисление глицерина хромовой кислотой

    Еще одним возможным методом получения глиоксаля является окисление глицерина хромовой кислотой в присутствии серной кислоты при комнатной температуре. Наряду с глиоксалем образуется формальдегид в соответствии с уравнением реакции:

    r 2 О 7 2- + ЗНОСН 2 СН(ОН)СН 2 ОН + 16Н 4 ↔ 4С r 3- + 3(СНО) 2 + ЗН 2 СО + 14 H 2 О (1.6)

    Скорость реакции окисления возрастает с увеличением концентрации ионов водорода. Предполагается, что активной окисляющей формой в реакции (1.6) является шестивалентный хром однозарядного иона HcrO 3 - . При исследовании реакции окисления глицерина были обнаружены свободные радикал-ионы, показывающие, что реакция окисления глицерина шестивалентным хромом может проходить по механизму как одно-, так и трехэлектронного переноса.

    Предположено, что окисление глицерина шестивалентным хромом может идти по следующему механизму.

    Реакции озона с различными ароматическими соединениями в интервале температур (-40) – (-20)°С по скорости реакции подчиняются бимолекулярному закону. Энергия активации реакции для бензола равна 50 кДж/моль, а скорость процесса сильно возрастает с увеличением полярности среды или в присутствии кислых катализаторов.

    Приведем данные о некоторых кинетических параметрах реакции озона с ароматическими углеводородами в CCl4 при t = 20°C и начальной концентрации озона О3 = 10-4¸10-6 моль/л, соответственно, стехиометрический коэффициент; константа скорости - k, л/моль×с; для: бензола - 3; 6 ×10-2; нафталина - 2; 2,4; фенантрена - 1; 0,8×102; пирена - 2; 0,8×102; полинафталина - 1,6×103; антрацена - 3; 5×103 (первая стадия) и 43 (вторая стадия). После присоединения первой молекулы озона происходит нарушение сопряжения у бензола и нафталина и следующие акты реакции протекают намного легче. Сопоставление констант скоростей реакций различных соединений с озоном показывает, что ароматические соединения реагируют значительно медленнее, чем олефины, причём константы скорости реакции увеличиваются в ряду: бензол < нафталин < фенантрен < пирен < антрацен. Озониды бензола и нафталина - вступают в характерные реакции с HI, NaOH, NH2OH·HCl, подвергаются термическому разложению с образованием пары: альдегид + кислота, а также способны к образованию полимеров.

    Оценку возможного индукционного влияния ранее присоединившегося озона на направление реакций соседней C=C-связи можно рассмотреть на основании состава продуктов разложения метоксигидроперекисей нафталина: при нагревании промежуточные продукты соответственно превращаются в метиловый эфир полуальдегида фталевой кислоты и диметилфталат, причем в смеси промежуточных продуктов содержится до 80 %. Таким образом, индукционное влияние озонидного цикла, образовавшегося в предыдущем акте реакции, проявляется в предпочтительном образовании биполярного иона у углеродного атома, наиболее удалённого от места присоединения первой молекулы озона.


    Реакции озона без затрагивания ароматического ядра основаны на известном положении, что в процессах окисления или при атаках свободными радикалами в реакцию легче вступают заместители, чем ароматическое ядро. Например, константы скорости для замещённых бензолов в ряду заместителей CH3 < CH3-CH2 < (CH3)2 CH - растут симбатно с увеличением числа реакционноспособных атомов водорода в заместителе и уменьшением прочности C-H связи.

    Замещённые алкилароматические соединения могут реагировать с озоном двояким образом: с образованием гидроперекисей по цепному механизму окисления и с образованием озонидов. Причём преобладающим является первое направление, а не второе. Протекание реакции по радикальному механизму подтверждается интенсивной хемилюминисценцией, возникающей при пропускании озона через алкилбензолы, обусловленной взаимодействием перекисных радикалов друг с другом.

    При действии озона на антрацен основным продуктом реакции является антрахинон, количество которого колеблется в пределах 20÷80 %, причём выход антрахинона зависит от природы растворителя, возрастая в уксусной кислоте и падая в CCl4. Вторым продуктом (с выходом 18÷67 %) является фталевая кислота - C6H5(COOH)2, а выход 4,3-нафталиндикарбонной кислоты - C12H10(COOH)2 составляет (6÷8) %. Известно , что антрацен легко окисляется кислородом, образуя антрахинон с высоким выходом. Процессы такого же типа наблюдаются при окислении поликарбонатов и алкилароматических углеводородов озоном.

    Таким образом, в реакциях озона с ароматическими углеводородами обнаруживаются два типа присоединения озона к C=C связям ароматического ядра: 1) сохраняются все три кислорода молекулы озона и образуются озониды, имеющие много общего с озонидами олефинов; 2) в молекуле нового соединения сохраняется один атом из трёх.

    Реакция озона с ароматическими углеводородами может использоваться в следующих синтезах:

    1) получение дифеновой кислоты из фенантрена:

    2) получение фталевого диальдегида и фталевой кислоты (а. с. 240700 СССР, 1969, БИ № 13), путём присоединения нафталином первых двух молекул озона из пяти возможных, после чего реакция сильно замедляется:

    3) получение глиоксалевой кислоты (а. с. 235759 СССР, 1969, БИ № 6) на базе низшего гомолога - бензола по реакции:

    1.6. Реакции взаимодействия озона с аминами, сернистыми и элементорганическими соединениями,

    а также полимерами

    При реакции озона с аминами, например, третичными, образуются окиси аминов, с высоким выходом (пат. 437566 Англия, 1935), а также нитроксильные радикалы и другие соединения (которые используются в качестве модификаторов и ингибиторов деструкции резин от О3). Схемы реакций взаимодействия О3 с третичными, вторичными и первичными аминами сложны и содержат много параллельно и последовательно протекающих реакций. Например, при реакции озона с трибутиламином в хлороформе выделено более 40 промежуточных и конечных продуктов реакции. Кинетика реакции озона с аминами подчиняется бимолекулярному закону и зависит от природы растворителя.


    I. Взаимодействие О3 с третичными аминами представляется следующей схемой :

    1) R3N: + О=О+-О–→ R3N+-O-O-O– (происходит присоединение О3 к амину с образованием продукта, по аналогии с реакцией О3 с альдегидами, насыщенными углеводородами с кратными связями);

    2) R3N+-O-OO–→ R3N → O + O2; (образование окисей аминов);

    3) R2N-(O-O-O-)-C(H2)-RI®R2N=CH-(HO-O-O-)-R®R2N-CHOHRI + O2 (или R2N-CH(-O-O-OH)-RI) (происходит окисление заместителей).

    Выход оксидов аминов максимален в растворителях в виде хлорсодержащих углеводородов и спиртов (CCl4, хлороформ, хлористый метилен). Также, понижение температуры реакции (<25 ºС) благоприятно сказывается на выходе оксидов аминов. Использование n-пентана уменьшает выход почти в 10 раз. Например, при озонировании трибутиламина в метаноле образуются (в %): (C4H9)3N → 0÷53; C4H9N=CH-C3H7 → 2; C4H9NCH=0 → 3; C4H9NCH=CHC2H5 → 11; (C4H9)2NH → 9; C4H9NCOC3H7 → 6.

    II. Реакция О3 со вторичными аминами приводит к образованию нитроксильных радикалов, которые в зависимости от строения амина могут быть главными продуктами реакции или присутствовать в заметных количествах. Особенно легко образуют нитроксильные радикалы ароматические амины и производные n-фенилендиамина. Например, взаимодействие озона с триацетонамином, получающийся нитроксильный радикал (2,2,6,6-тетрометил-4-оксопиперидоксил), отличается большой стабильностью и сохраняется месяцами при комнатной температуре без заметных изменений. Большинство ароматических аминов являются антиозонантами и используются для защиты резиновых изделий от озонового старения.

    Реакцию озона с вторичными аминами можно представить по схеме (действие О3 на ди-трет-бутиламин в пентане, при t = -120 ºС):

    III. Основными продуктами взаимодействия озона с первичными аминами являются нитросоединения и аммониевые основания. Их относительное содержание зависит главным образом от природы растворителя. При переходе от углеводородов к хлорсодержащим растворителям выход нитросоединений уменьшается, но зато возрастает выход аммониевых солей, т. е. идет вовлечение молекулы растворителя в реакцию.

    Схему взаимодействия О3 с первичным амином можно в общем виде представить уравнением:

    C4H9NH2 + O3 → C4H9NO2 + O2.

    Образование конечного нитросоединения требует расхода 3 молекул озона. Для сравнения константы скорости реакции озона с аммиаком в водных растворах (k = 39 л/моль) заметно ниже, чем у аминов (например, для анилина – k = 2,5·103 при t = 20 ºC).

    Основные стадии реакции трибутилтиомочевины и ее аналогов с озоном можно представить упрощенной схнмой:

    Наиболее легко реагируют нитроксильные радикалы. Поглощая 1 моль озона, они превращаются, главным образом, в нитросоединения.

    При реакции озона с сернистыми соединениями, например, сульфидами (R-(–S–)n-R), тиомочевинами и тиосемикарбазидами (R-(R)-C=S) реакции протекают главным образом по атому серы. Для проведения реакции с дисульфидами и полисульфидами используют раствор в четыреххлористом углероде. При этом исходные сульфиды довольно легко реагируют с озоном с константой скорости k = 103 л/моль·с, близкой к фенолам и значительно больше скорости окисления группы -СН2- в алкильных заместителях. Основным продуктом первой стадии реакции является сульфооксид (=S=O), который далее может окисляться до сульфона (=S(=O)2), но со значительно меньшей скоростью (в 50÷100 раз). Константы скорости при взаимодействии озона с сульфидами, на примере диметилсульфида (CH3-S-CH3) - 1,5·103 л/моль·с, по сравнению с серой (S8) - 5,5 и этиловым спиртом (CH3CH2OH) - 10. Причем наблюдается уменьшение реакционной способности органических сернистых соединений в ряду: R-S-R, R-(S)2-RS8.

    Озон взаимодействует и с элементоорганическими соединениями, например, кремния :

    (C2H5)3Si-CH2-CH3+O3 ® (C2H5)3Si-CH-(OO·)-CH3 + OH·®(C2H5)3SiOOH + O=CH-CH3

    или по второй реакции: ® (C2H5)3Si-(-O-O-O)-CH2 ® (C2H5)3SiO2 + OOCH2CH3.

    При действии озона на полимерные материалы, особенно сильное воздействие происходит на эластомеры, содержащие С=С связи в главной цепи макромолекулы (например, каучуки). При действии О3 на полимеры имеющие насыщенную углеводородную цепь, особенно на их растворы (в CCl4 при t = 20 ºC), наблюдается падение молекулярного веса и накопление кислородсодержащих функциональных групп (кислот, кетонов и перекисей). Наиболее медленно реагируют с озоном полимеры, содержащие фенильные циклы в главной цепи, в то время как полициклические (полинафтилены, полиатрацены) или полимеры с гетероатомами (поликарбонат) вступают в реакцию значительно легче. В ряду полимеров с насыщенной углеводородной цепью скорость реакции возрастает от полиизобутилена к поливинилциклогексану, одновременно наблюдается уменьшение числа разрывов цепи. Самая большая константа скорости у полибутадиена и полиизопрена и у них же наименьшее число разрывов на один акт реакции. Некоторые полимеры нерастворимы в обычных растворителях (например, полиэтилен). Озонирование отличается от схемы термоокислительной деструкции полистирола тем, что низкие температуры и большие скорости образования радикалов создают условия, в которых доля цепных процессов составляет 15÷20 % в балансе реакции, а главная часть продуктов образуется при распаде пероксирадикалов. Кислоты составляют небольшую часть продуктов реакции и могут образовываться как в результате окисления феноксирадикалов или продуктов их превращений, так и в результате разрушения ароматических озонидов. Действие озона на другие полимеры (полиэтилен, поливинилциклогексан) сопровождается образованием перекисных радикалов. Деструкция ненасыщенных полимеров под действием О3 (например, каучуков, резин) происходит аналогично мономерам, т. е. по С=С связям.

    ОПРЕДЕЛЕНИЕ

    Бензол (циклогексатриен – 1,3,5) – органическое вещество, простейший представитель ряда ароматических углеводородов.

    Формула – С 6 Н 6 (структурная формула – рис. 1). Молекулярная масса – 78, 11.

    Рис. 1. Структурные и пространственная формулы бензола.

    Все шесть атомов углерода в молекуле бензола находятся в sp 2 гибридном состоянии. Каждый атом углерода образует 3σ-связи с двумя другими атомами углерода и одним атомом водорода, лежащие в одной плоскости. Шесть атомов углерода образуют правильный шестиугольник (σ-скелет молекулы бензола). Каждый атом углерода имеет одну негибридизованную р-орбиталь, на которой находится один электрон. Шесть р-электронов образуют единое π-электронное облако (ароматическую систему), которое изображают кружочком внутри шестичленного цикла. Углеводородный радикал, полученный от бензола носит название C 6 H 5 – — фенил (Ph-).

    Химические свойства бензола

    Для бензола характерны реакции замещения, протекающие по электрофильному механизму:

    — галогенирование (бензол взаимодействует с хлором и бромом в присутствии катализаторов – безводных AlCl 3 , FeCl 3 , AlBr 3)

    C 6 H 6 + Cl 2 = C 6 H 5 -Cl + HCl;

    — нитрование (бензол легко реагирует с нитрующей смесью – смесь концентрированных азотной и серной кислот)

    — алкилирование алкенами

    C 6 H 6 + CH 2 = CH-CH 3 → C 6 H 5 -CH(CH 3) 2 ;

    Реакции присоединения к бензолу приводят к разрушению ароматической системы и протекают только в жестких условиях:

    — гидрирование (реакция протекает при нагревании, катализатор – Pt)

    — присоединение хлора (протекает под действием УФ-излучения с образованием твердого продукта – гексахлорциклогексана (гексахлорана) – C 6 H 6 Cl 6)

    Как и любое органическое соединение бензол вступает в реакцию горения с образованием в качестве продуктов реакции углекислого газа и воды (горит коптящим пламенем):

    2C 6 H 6 +15O 2 → 12CO 2 + 6H 2 O.

    Физические свойства бензола

    Бензол – жидкость без цвета, но обладающая специфическим резким запахом. Образует с водой азеотропную смесь, хорошо смешивается с эфирами, бензином и различными органическими растворителями. Температура кипения – 80,1С, плавления – 5,5С. Токсичен, канцероген (т.е. способствует развитию онкологических заболеваний).

    Получение и применение бензола

    Основные способы получения бензола:

    — дегидроциклизация гексана (катализаторы – Pt, Cr 3 O 2)

    CH 3 –(CH 2) 4 -CH 3 → С 6 Н 6 + 4H 2 ;

    — дегидрирование циклогексана (реакция протекает при нагревании, катализатор – Pt)

    С 6 Н 12 → С 6 Н 6 + 4H 2 ;

    — тримеризация ацетилена (реакция протекает при нагревании до 600С, катализатор – активированный уголь)

    3HC≡CH → C 6 H 6 .

    Бензол служит сырьем для производства гомологов (этилбензола, кумола), циклогексана, нитробензола, хлорбензола и др. веществ. Ранее бензол использовали в качестве присадки к бензину для повышения его октанового числа, однако, сейчас, в связи с его высокой токсичностью содержание бензола в топливе строго нормируется. Иногда бензол используют в качестве растворителя.

    Примеры решения задач

    ПРИМЕР 1

    Задание Запишите уравнения, с помощью которых можно осуществить следующие превращения: CH 4 → C 2 H 2 → C 6 H 6 → C 6 H 5 Cl.
    Решение Для получения ацетилена из метана используют следующую реакцию:

    2CH 4 → C 2 H 2 + 3Н 2 (t = 1400C).

    Получение бензола из ацетилена возможно по реакции тримеризации ацетилена, протекающей при нагревании (t = 600C) и в присутствии активированного угля:

    3C 2 H 2 → C 6 H 6 .

    Реакция хлорирования бензола с получением в качестве продукта хлорбензола осуществляется в присутствии хлорида железа (III):

    C 6 H 6 + Cl 2 → C 6 H 5 Cl + HCl.

    ПРИМЕР 2

    Задание К 39 г бензола в присутствии хлорида железа (III) добавили 1 моль бромной воды. Какое количество вещества и сколько граммов каких продуктов при этом получилось?
    Решение Запишем уравнение реакции бромирования бензола в присутствии хлорида железа (III):

    C 6 H 6 + Br 2 → C 6 H 5 Br + HBr.

    Продуктами реакции являются бромбензол и бромоводород. Молярная масса бензола, рассчитанная с использованием таблицы химических элементов Д.И. Менделеева – 78 г/моль. Найдем количество вещества бензола:

    n(C 6 H 6) = m(C 6 H 6) / M(C 6 H 6);

    n(C 6 H 6) = 39 / 78 = 0,5 моль.

    По условию задачи бензол вступил в реакцию с 1 моль брома. Следовательно, бензол находится в недостатке и дальнейшие расчеты будем производить по бензолу. Согласно уравнению реакции n(C 6 H 6): n(C 6 H 5 Br) : n(HBr) = 1:1:1, следовательно n(C 6 H 6) = n(C 6 H 5 Br) = : n(HBr) = 0,5 моль. Тогда, массы бромбензола и бромоводорода будут равны:

    m(C 6 H 5 Br) = n(C 6 H 5 Br)×M(C 6 H 5 Br);

    m(HBr) = n(HBr)×M(HBr).

    Молярные массы бромбензола и бромоводорода, рассчитанные с использованием таблицы химических элементов Д.И. Менделеева – 157 и 81 г/моль, соответственно.

    m(C 6 H 5 Br) = 0,5×157 = 78,5 г;

    m(HBr) = 0,5×81 = 40,5 г.

    Ответ Продуктами реакции являются бромбензол и бромоводород. Массы бромбензола и бромоводорода – 78,5 и 40,5 г, соответственно.