Какие оксиды взаимодействуют с кислородом. Кислотные оксиды. Стехиометрические типы оксидов металлов

1. Металл + Неметалл. В данное взаимодействие не вступают инертные газы. Чем выше электроотрицательность неметалла, тем с большим числом металлов он будет реагировать. Например, фтор реагирует со всеми металлами, а водород – только с активными. Чем левее в ряду активности металлов находится металл, тем с большим числом неметаллов он может реагировать. Например, золото реагирует только с фтором, литий – со всеми неметаллами.

2. Неметалл + неметалл. При этом более электроотрицательный неметалл выступает окислителем, менее ЭО – восстановителем. Неметаллы с близкой электроотрицательностью плохо взаимодействуют между собой, например, взаимодействие фосфора с водородом и кремния с водородом практически не возможно, так как равновесие этих реакций смещено в сторону образования простых веществ. Не реагируют с неметаллами гелий, неон и аргон, остальные инертные газы в жестких условиях могут реагировать с фтором.
Не взаимодействуют кислород с хлором, бромом и йодом. Со фтором кислород может реагировать при низких температурах.

3. Металл + кислотный оксид. Металл восстанавливает неметалл из оксида. После этого избыток металла может реагировать с получившимся неметаллом. Например:

2 Mg + SiO 2 = 2 MgO + Si (при недостатке магния)

2 Mg + SiO 2 = 2 MgO + Mg 2 Si (при избытке магния)

4. Металл + кислота. Металлы, стоящие в ряду напряжений левее водорода, реагируют с кислотами с выделением водорода.

Исключение составляют кислоты – окислители (серная концентрированная и любая азотная), которые могут реагировать с металлами, стоящими в ряду напряжений правее водорода, в реакциях не выделяется водород, а получается вода и продукт восстановления кислоты.

Нужно обратить внимание на то, что при взаимодействии металла с избытком многоосновной кислоты может получиться кислая соль: Mg +2 H 3 PO 4 = Mg (H 2 PO 4 ) 2 + H 2 .

Если продуктом взаимодействия кислоты и металла является нерастворимая соль, то металл пассивируется, так как поверхность металла защищается нерастворимой солью от действия кислоты. Например, действие разбавленной серной кислоты на свинец, барий или кальций.

5. Металл + соль. В растворе в данную реакцию вступают металл, стоящий в ряду напряжений правее магния, включая сам магний, но левее металла соли. Если металл активнее магния, то он реагирует не с солью, а с водой с образованием щелочи, которая в дальнейшем реагирует с солью. При этом исходная соль и получающаяся соль должны быть растворимыми. Нерастворимый продукт пассивирует металл.

Однако, из этого правила бывают исключения:

2FeCl 3 + Cu = CuCl 2 + 2FeCl 2 ;

2FeCl 3 + Fe = 3FeCl 2 . Так как железо имеет промежуточную степень окисления, то его соль в высшей степени окисления легко восстанавливается до соли в промежуточной степени окисления, окисляя даже менее активные металлы.

В расплавах ряд напряжений металлов не действует. Определить, возможна ли реакция между солью и металлом, можно только с помощью термодинамических расчетов. Например, натрий может вытеснить калий из расплава хлорида калия, так как калий более летучий: Na + KCl = NaCl + K (эту реакцию определяет энтропийный фактор). С другой стороны алюминий получали вытеснением из хлорида натрием: 3 Na + AlCl 3 = 3 NaCl + Al . Этот процесс экзотермический, его определяет энтальпийный фактор.

Возможен вариант, что соль при нагревании разлагается, и продукты ее разложения могут реагировать с металлом, например нитрат алюминия и железо. Нитрат алюминия разлагается при нагревании на оксид алюминия, оксид азота (IV ) и кислород, кислород и оксид азота будут окислять железо:

10Fe + 2Al(NO 3) 3 = 5Fe 2 O 3 + Al 2 O 3 + 3N 2

6. Металл + основный оксид. Также, как и в расплавах солей, возможность этих реакций определяется термодинамически. В качестве восстановителей часто используют алюминий, магний и натрий. Например: 8 Al + 3 Fe 3 O 4 = 4 Al 2 O 3 + 9 Fe реакция экзотермическая, энтальпийный фактор);2 Al + 3 Rb 2 O = 6 Rb + Al 2 O 3 (рубидий летучий, энтальпийный фактор).

8. Неметалл + основание. Как правило, реакция идет между неметаллом и щелочью.Не все неметаллы могут реагировать с щелочами: нужно помнить, что в это взаимодействие вступают галогены (по-разному в зависимости от температуры), сера (при нагревании), кремний, фосфор.

KOH + Cl 2 = KClO + KCl + H 2 O (на холоде)

6 KOH + 3 Cl 2 = KClO 3 + 5 KCl + 3 H 2 O (в горячем растворе)

6KOH + 3S = K 2 SO 3 + 2K 2 S + 3H 2 O

2KOH + Si + H 2 O = K 2 SiO 3 + 2H 2

3KOH + 4P + 3H 2 O = PH 3 + 3KPH 2 O 2

1) неметалл – восстановитель (водород, углерод):

СО 2 + С = 2СО;

2NO 2 + 4H 2 = 4H 2 O + N 2 ;

SiO 2 + C = CO 2 + Si. Если получившийся неметалл может реагировать с металлом, использованным в качестве восстановителя, то реакция пойдет дальше (при избытке углерода) SiO 2 + 2 C = CO 2 + Si С

2) неметалл – окислитель (кислород, озон, галогены):

2С O + O 2 = 2СО 2 .

С O + Cl 2 = СО Cl 2 .

2 NO + O 2 = 2 N О 2 .

10. Кислотный оксид + основный оксид . Реакция идёт, если получающаяся соль в принципе существует. Например, оксид алюминия может реагировать с серным ангидридом с образованием сульфата алюминия, но не может реагировать с углекислым газом, так как соответствующей соли не существует.

11. Вода + основный оксид . Реакция возможна, если образуется щелочь, то есть растворимое основание (или мало растворимое, в случае кальция). Если основание нерастворимое или мало растворимое, то идёт обратная реакция разложения основания на оксид и воду.

12. Основный оксид + кислота . Реакция возможна, если образующаяся соль существует. Если получающаяся соль нерастворима, то реакция может пассивироваться из-за перекрытия доступа кислоты к поверхности оксида. В случае избытка многоосновной кислоты возможно образование кислой соли.

13. Кислотный оксид + основание . Как правило, реакция идет между щелочью и кислотным оксидом. Если кислотный оксид соответствует многоосновной кислоте, может получиться кислая соль: CO 2 + KOH = KHCO 3 .

Кислотные оксиды, соответствующие сильным кислотам, могут реагировать и с нерастворимыми основаниями.

Иногда с нерастворимыми основаниями реагируют оксиды, соответствующие слабым кислотам, при этом может получиться средняя или основная соль (как правило, получается менее растворимое вещество): 2 Mg (OH ) 2 + CO 2 = (MgOH ) 2 CO 3 + H 2 O .

14. Кислотный оксид + соль. Реакция может идти в расплаве и в растворе. В расплаве менее летучий оксид вытесняет из соли более летучий. В растворе оксид, соответствующий более сильной кислоте, вытесняет оксид, соответствующий более слабой кислоте. Например, Na 2 CO 3 + SiO 2 = Na 2 SiO 3 + CO 2 , в прямом направлении эта реакция идет в расплаве, углекислый газ более летучий, чем оксид кремния; в обратном направлении реакция идет в растворе, угольная кислота сильнее кремниевой, к тому же оксид кремния выпадает в осадок.

Возможно соединение кислотного оксида с собственной солью, например, из хромата можно получить дихромат, и сульфата – дисульфат, из сульфита – дисульфит:

Na 2 SO 3 + SO 2 = Na 2 S 2 O 5

Для этого нужно взять кристаллическую соль и чистый оксид, или насыщенный раствор соли и избыток кислотного оксида.

В растворе соли могут реагировать с собственными кислотными оксидами с образованием кислых солей: Na 2 SO 3 + H 2 O + SO 2 = 2 NaHSO 3

15. Вода + кислотный оксид . Реакция возможна, если образуется растворимая или мало растворимая кислота. Если кислота нерастворимая или мало растворимая то идёт обратная реакция разложения кислоты на оксид и воду. Например, для серной кислоты характерна реакция получения из оксида и воды, реакция разложения практически не идёт, кремниевую кислоту нельзя получить из воды и оксида, но она легко разлагается на эти составляющие, а вот угольная и сернистая кислоты могут участвовать как в прямых, так и обратных реакциях.

16. Основание + кислота. Реакция идет, если хотя бы одно из реагирующих веществ растворимо. В зависимости от соотношения реагентов могут получаться средние, кислые и основные соли.

17. Основание + соль. Реакция идет, если оба исходные вещества растворимы, а в качестве продукта получается хотя бы один неэлектролит или слабый электролит (осадок, газ, вода).

18. Соль + кислота. Как правило,реакция идет, если оба исходные вещества растворимы, а в качестве продукта получается хотя бы один неэлектролит или слабый электролит (осадок, газ, вода).

Сильная кислота может реагировать с нерастворимыми солями слабых кислот (карбонатами, сульфидами, сульфитами, нитритами), при этом выделяется газообразный продукт.

Реакции между концентрированными кислотами и кристаллическими солями возможны, если при этом получается более летучая кислота: например, хлороводород можно получить действием концентрированной серной кислоты на кристаллический хлорид натрия, бромоводород и йодоводород – действием ортофосфорной кислоты на соответствующие соли. Можно действовать кислотой на собственную соль для получения кислой соли, например: BaSO 4 + H 2 SO 4 = Ba (HSO 4 ) 2 .

19. Соль + соль. Как правило,реакция идет, если оба исходные вещества растворимы, а в качестве продукта получается хотя бы один неэлектролит или слабый электролит.

1) соль не существует, потому что необратимо гидролизуется . Это большинство карбонатов, сульфитов, сульфидов, силикатов трехвалентных металлов, а так же некоторые соли двухвалентных металлов и аммония. Соли трехвалентных металлов гидролизуются до соответствующего основания и кислоты, а соли двухвалентных металлов – до менее растворимых основных солей.

Рассмотрим примеры:

2 FeCl 3 + 3 Na 2 CO 3 = Fe 2 ( CO 3 ) 3 + 6 NaCl (1)

Fe 2 (CO 3) 3 + 6H 2 O = 2Fe(OH) 3 + 3H 2 CO 3

H 2 CO 3 разлагается на воду и углекислый газ, вода в левой и правой части сокращается и получается: Fe 2 ( CO 3 ) 3 + 3 H 2 O = 2 Fe (OH ) 3 + 3 CO 2 (2)

Если теперь объединить (1) и (2) уравнения и сократить карбонат железа, мы получим суммарное уравнение, отражающее взаимодействие хлорида железа (III ) и карбоната натрия: 2 FeCl 3 + 3 Na 2 CO 3 + 3 H 2 O = 2 Fe (OH ) 3 + 3 CO 2 + 6 NaCl

CuSO 4 + Na 2 CO 3 = CuCO 3 + Na 2 SO 4 (1)

Подчеркнутая соль не существует из-за необратимого гидролиза:

2CuCO 3 + H 2 O = (CuOH) 2 CO 3 +CO 2 (2)

Если теперь объединить (1) и (2) уравнения и сократить карбонат меди, мы получим суммарное уравнение, отражающее взаимодействие сульфата (II ) и карбоната натрия:

2CuSO 4 + 2Na 2 CO 3 + H 2 O = (CuOH) 2 CO 3 + CO 2 + 2Na 2 SO 4

Оксиды - это бинарные соединения элемента с кислородом, находящимся в степени окисления (-2). Оксиды являются характеристическими соединениями для химических элементов . Неслучайно Д.И. Менделеев при составлении периодической таблицы ориентировался на стехиометрию высшего оксида и объединял в одну группу элементы с одинаковой формулой высшего оксида. Высший оксид - это оксид, в котором элемент присоединил максимально возможное для него количество кислородных атомов. В высшем оксиде элемент находится в своей максимальной (высшей) степени окисления. Так, высшие оксиды элементов VI группы, как неметаллов S, Se, Te, так и металлов Cr, Mo, W, описываются одинаковой формулой ЭО 3 . Все элементы группы проявляют наибольшее сходство именно в высшей степени окисления. Так, например, все высшие оксиды элементов VI группы - кислотные.

Оксиды - это самые распространенные соединения в металлургических технологиях .

Многие металлы находятся в земной коре в виде оксидов . Из природных оксидов получают такие важные металлы, как Fe, Mn, Sn, Cr.

В таблице приведены примеры природных оксидов, используемых для получения металлов.

Ме Оксид Минерал
Fe Fe 2 O 3 и Fe 3 O 4 Гематит и магнетит
Mn MnO 2 пиролюзит
Cr FeO . Cr 2 O 3 хромит
Ti TiO 2 и FeO . TiO 2 Рутил и ильменит
Sn SnO 2 Касситерит
Оксиды являются целевыми соединениями в ряде металлургических технологий . Природные соединения предварительно переводят в оксиды, из которых затем восстанавливают металл. Например, природные сульфиды Zn, Ni, Co, Pb, Mo обжигают, превращая в оксиды.

2ZnS + 3O 2 = 2 ZnO + 2SO 2

Природные гидроксиды и карбонаты подвергают термическому разложению, приводящему к образованию оксида.

2MeOOH = Me 2 O 3 + H 2 O

MeCO 3 = MeO + CO 2

Кроме того, поскольку металлы, находясь в окружающей среде, окисляются кислородом воздуха, а при высоких температурах, характерных для многих металлургических производств, окисление металлов усиливается, необходимы знания о свойствах получаемых оксидов.

Приведенные выше причины объясняют, почему при обсуждении химии металлов оксидам уделяется особое внимание.

Среди химических элементов металлов - 85, и многие металлы имеют не по одному оксиду, поэтому класс оксидов включает огромное количество соединений, и эта многочисленность делает обзор их свойств непростой задачей. Тем не менее, постарается выявить:

  • общие свойства, присущие всем оксидам металлов,
  • закономерности в изменениях их свойств,
  • выявим химические свойства оксидов, наиболее широко используемых в металлургии,
  • приведем некоторые из важных физических характеристик оксидов металлов.

Оксиды металлов различаются стехиометрическим соотношением атомов металла и кислорода . Эти стехиометрические соотношения определяют степень окисления металла в оксиде.

В таблице приведены стехиометрические формулы оксидов металлов в зависимости от степени окисления металла и указано, какие именно металлы способны образовывать оксиды данного стехиометрического типа.

Помимо таких оксидов, которые в общем случае могут быть описаны формулой МеО Х/2 , где Х - это степень окисления металла, существуют также оксиды, содержащие металл в разных степенях окисления, например, Fe 3 O 4 , а также, так называемые, смешанные оксиды, например, FeO . Cr 2 O 3 .

Не все оксиды металлов имеют постоянный состав, известны оксиды переменного состава, например, TiOx, где x = 0,88 - 1,20; FeOx, где x = 1,04 - 1,12 и др.

Оксиды s-металлов имеют только по одному оксиду. Металлы p- и d- блоков, как правило, имеют несколько оксидов, исключение Al, Ga, In и d-элементы 3 и 12 групп.

Оксиды типа MeO и Ме 2 О 3 образуют почти все d-металлы 4 периода . Для большинства d-металлов 5 и 6 периодов характерны оксиды, в которых металл, находится в высоких степенях окисления ³ 4 . Оксиды типа МеО, образуют только Cd, Hg и Pd; типа Me 2 O 3 , помимо Y и La, образуют Au, Rh; серебро и золото образуют оксиды типа Ме 2 O.

  • Стехиометрические типы оксидов металлов

    Степень окисления Тип оксида Металлы, образующие оксид
    +1 Me 2 O Металлы 1 и 11 групп
    +2 MeO Все d -металлы 4 периода (кроме Sc), все металлы 2 и 12 групп , а также Sn, Pb; Cd, Hg и Pd
    +3 Me 2 O 3 Почти все d -металлы 4 периода (кроме Cu и Zn), все металлы 3 и 13 групп , Au, Rh
    +4 MeO 2 Металлы 4 и 14 групп и многие другие d-металлы: V, Nb, Ta; Cr, Mo, W; Mn, Tc, Re; Ru, Os; Ir, Pt
    +5 Me 2 O 5 Металлы 5 и 1 5 групп
    +6 MeO 3 Металлы 6 группы
    +7 Me 2 O 7 Металлы 7 группы
    +8 MeO 4 Os и Ru
  • Структура оксидов

  • Подавляющее большинство оксидов металлов при обычных условиях - это твердые кристаллические вещества. Исключение - кислотный оксид Mn 2 O 7 (это жидкость темно-зеленого цвета). Лишь очень немногие кристаллы кислотных оксидов металлов имеют молекулярную структуру, это кислотные оксиды с металлом в очень высокой степени окисления: RuO 4 , OsO4, Mn 2 O 7 , Tc 2 O 7 , Re 2 O 7 .

    В самом общем виде структуру многих кристаллических оксидов металлов можно представить как регулярное трехмерное расположение кислородных атомов в пространстве, в пустотах между кислородными атомами находятся атомы металлов. Поскольку кислород - это очень электроотрицательный элемент, он перетягивает часть валентных электронов от атома металла, преобразуя его в катион, а сам кислород переходит в анионную форму и увеличивается в размерах за счет присоединения чужих электронов. Крупные кислородные анионы образуют кристаллическую решетку, а в пустотах между ними размещаются катионы металлов. Только в оксидах металлов, находящихся в небольшой степени окисления и отличающихся небольшим значение электроотрицательности, связь в оксидах можно рассматривать как ионную. Практически ионными являются оксиды щелочных и щелочноземельных металлов. В большинстве оксидов металлов химическая связь оказывается промежуточной между ионной и ковалентной . С повышением степени окисления металла вклад ковалентной составляющей возрастает.

  • Кристаллические структуры оксидов металлов

  • Координационные числа металлов в оксидах

    Металл в оксидах характеризуется не только степенью окисления, но и координационным числом , указывающим, какое количество кислородных атомов он координирует .

    Очень распространенным в оксидах металлов является координационное число 6, в этом случае катион металла находится в центре октаэдра, образованного шестью кислородными атомами. Октаэдры так упаковываются в кристаллическую решетку, чтобы выдерживалось стехиометрическое соотношение атомов металла и кислорода. Так в кристаллической решетке оксида кальция, координационное число кальция равно 6. Кислородные октаэдры с катионом Ca 2+ в центре так объединяются между собой, что каждый кислород оказывается в окружении шести атомов кальция, т.е. кислород принадлежит одновременно 6 атомам кальция. Говорят, что такой кристалл имеет координацию (6, 6). Первым указывается координационное число катиона, а вторым аниона. Таким образом формулу оксида СаО следовало бы записать
    СаО 6/6 ≡ СаО.
    В оксиде TiO 2 металл также находится в октаэдрическом окружении кислородных атомов, часть кислородных атомов соединяется противоположными ребрами, а часть вершинами. В кристалле рутила TiO 2 координация (6, 3) означает, что кислород принадлежит трем атомам титана. Атомы титана образуют в кристаллической решетке рутила прямоугольный параллепипед.

    Кристаллические структуры оксидов достаточно разнообразны. Металлы могут находиться не только в октаэдрическом окружении из кислородных атомов, но и в тетраэдрическом окружении, например в оксиде BeO ≡ BeO 4|4 . В оксиде PbO, также имеющем координацию кристалла (4,4), свинец оказывается в вершине тетрагональной призмы, в основании которой находятся атомы кислорода.

    Атомы металла могут находиться в разном окружении кислородных атомов, например в октаэдрических и в тетраэдрических пустотах, и металл при этом оказывается в разных степенях окисления , как например, в магнетите Fe 3 O 4 ≡ FeO . Fe 2 O 3 .

    Дефекты в кристаллических решетках объясняют непостоянство состава некоторых оксидов.

    Представление о пространственных структурах позволяет понять причины образования смешанных оксидов. В пустотах между кислородными атомами могут находиться атомы не одного металла, а двух разных , как например,
    в хромите FeO . Cr 2 O 3 .

  • Структура рутила

  • Некоторые физические свойства оксидов металлов

    Подавляющее большинство оксидов при обычной температуре это твердые вещества. Они имеют меньшую плотность, чем металлы.

    Многие оксиды металлов являются тугоплавкими веществами . Это позволяет использовать тугоплавкие оксиды как огнеупорные материалы для металлургических печей.

    Оксид CaO получают в промышленном масштабе в объеме 109 млн т/год. Его используют для футеровки печей. В качестве огнеупоров используют также оксиды BeO и MgO. Оксид MgO один из немногих огнеупоров очень устойчивых к действию расплавленных щелочей.

    Иногда тугоплавкость оксидов создает проблемы при получении металлов электролизом из их расплавов. Так оксид Al 2 O 3 , имеющий температуру плавления около 2000 о С, приходится смешивать с криолитом Na 3 , чтобы снизить температуру плавления до ~ 1000 о С, и через этот расплав пропускать электрический ток.

    Тугоплавкими являются оксиды d-металлов 5 и 6 периодов Y 2 O 3 (2430), La 2 O 3 (2280), ZrO 2 (2700), HfO 2 (2080), Ta 2 O 5 (1870), Nb 2 O 5 (1490), а также многие оксиды d-металлов 4 периода (см. табл.). Высокие температуры плавления имеют все оксиды s-металлов 2 группы, а также Al 2 O 3 , Ga 2 O 3 , SnО,SnO 2 , PbO (см. табл.).

    Низкие температуры плавления (о С) обычно имеют кислотные оксиды: RuO 4 (25), OsO 4 (41); Te 2 O 7 (120), Re 2 O 7 (302), ReO 3 (160), CrO 3 (197). Но некоторые кислотные оксиды имеют достаточно высокие температуры плавления (о С): MoO 3 (801) WO 3 (1473), V 2 O 5 (680).

    Некоторые из основных оксидов d-элементов, завершающих ряды, оказываются непрочными, плавятся при низкой температуре или при нагревании разлагаются. Разлагаются при нагревании HgO (400 o C), Au 2 O 3 (155), Au 2 O, Ag 2 O (200), PtO 2 (400).

    При нагревании выше 400 о С разлагаются и все оксиды щелочных металлов с образованием металла и пероксида. Оксид Li 2 O более устойчив и разлагается при температуре выше 1000 о С.

    В таблице, приведенной ниже, приводятся некоторые характеристики d-металлов 4 периода, а также s- и p-металлов.

  • Характеристики оксидов s- и р-металлов

    Me Оксид Цвет Т пл., оС Кислотно-основной характер
    s-металлы
    Li Li 2 O белый Все оксиды разлагаются при
    T > 400 о С, Li 2 O при Т > 1000 o C
    Все оксиды щелочных металлов основные, растворяются в воде
    Na Na 2 O белый
    K K 2 O желтый
    Rb Rb 2 O желтый
    Cs Cs 2 O оранжевый
    Be BeO белый 2580 амфотерный
    Mg MgO белый 2850 основной
    Ca CaO белый 2614 Основные, ограниченно растворяются в воде
    Sr SrO белый 2430
    Ba BaO белый 1923
    p-металлы
    Al Al 2 O 3 белый 2050 амфотерный
    Ga Ga 2 O 3 желтый 1795 амфотерный
    In In 2 O 3 желтый 1910 амфотерный
    Tl Tl 2 O 3 коричневый 716 амфотерный
    Tl 2 O черный 303 основной
    Sn SnO темно-синий 1040 амфотерный
    SnO 2 белый 1630 амфотерный
    Pb PbO красный Переходит в желтый при Т > 490 о С амфотерный
    PbO желтый 1580 амфотерный
    Pb 3 O 4 красный Разл.
    PbO 2 черный Разл. При 300 о С амфотерный
    Химические свойства (см. по ссылке)
  • Характеристики оксидов d-металлов 4 периода

    Оксид Цвет r, г/см3 Т пл., оС - ΔGo, кДж/моль - ΔHo, кДж/моль Преобладающий

    Кислотно-основной характер

    Sc Sc 2 O 3 белый 3,9 2450 1637 1908 основной
    Ti TiO коричневый 4,9 1780, p 490 526 основной
    Ti 2 O 3 фиолетовый 4,6 1830 1434 1518 основной
    TiO 2 белый 4,2 1870 945 944 амфотерный
    V VO серый 5,8 1830 389 432 основной
    V 2 O 3 черный 4,9 1970 1161 1219 основной
    VO 2 синий 4,3 1545 1429 713 амфотерный
    V 2 O 5 оранжевый 3,4 680 1054 1552 кислотный
    Cr Cr 2 O 3 зеленый 5,2 2335 p 536 1141 амфотерный
    CrO 3 красный 2,8 197 p 513 590 кислотный
    Mn MnO Серо-зеленый 5,2 1842 385 385 основной
    Mn 2 O 3 коричневый 4,5 1000 p 958 958 основной
    Mn 3 O 4 коричневый 4,7 1560 p 1388 1388
    MnO 2 коричневый 5,0 535 p 521 521 амфотерный
    Mn 2 O 7 зеленый 2,4 6, 55 p 726 кислотный
    Fe FeO Черный 5,7 1400 265 265 основной
    Fe 3 O 4 черный 5,2 1540 p 1117 1117
    Fe 2 O 3 коричневый 5,3 1565 p 822 822 основной
    Co CoO Серо-зеленый 5,7 1830 213 239 основной
    Co 3 O 4 черный 6,1 900 p 754 887
    Ni NiO Серо-зеленый 7,4 1955 239 240 основной
    Cu Cu 2 O оранжевый 6,0 1242 151 173 основной
    CuO черный 6,4 800 p 134 162 основной
    Zn ZnO белый 5,7 1975 348 351 амфотерный
    Химические свойства (см. по ссылке)
  • Кислотно-основной характер оксидов зависит от степени окисления металла и от природы металла.

    Чем ниже степень окисления, тем сильнее проявляются основные свойства. Если металл находится в степени окисления Х £ 4 , то его оксид имеет либо основной, либо амфотерный характер.

    Чем выше степень окисления, тем сильнее выражены кислотные свойства . Если металл находится в степени окисления Х 5 , то его гидроксид имеет кислотный характер.

    Кроме кислотных и основных оксидов существуют амфотерные оксиды, проявляющие одновременно и кислотные и основные свойства .

    Амфотерны все оксиды p-металлов, кроме Tl 2 O .

    Из s -металлов только Be имеет амфотерный оксид.

    Среди d-металлов амфотерными являются оксиды ZnO, Cr 2 O 3 , Fe 2 O 3 , Au 2 O 3 , и практически все оксиды металлов в степени окисления +4 за исключением основных ZrO 2 и HfO 2 .

    Большинство оксидов, в том числе, Cr 2 O 3 , Fe 2 O 3 и диоксиды металлов проявляют амфотерность лишь при сплавлении со щелочами. С растворами щелочей взаимодействуют ZnO, VO 2 , Au 2 O 3 .

    Для оксидов, помимо кислотно-основных взаимодействий, т. е. реакций между основными оксидами и кислотами и кислотными оксидами, а также реакций кислотных и амфотерных оксидов со щелочами, характерны также окислительно-восстановительные реакции.

  • Окислительно-восстановительные свойства оксидов металлов

    Поскольку в любых оксидах металл находится в окисленном состоянии, все оксиды без исключения способны проявлять окислительные свойства .

    Самые распространенные реакции в пирометаллургии - это окислительно-восстановительные взаимодействия между оксидами металлов и различными восстановителями, приводящие к получению металла.

    Примеры

    2Fe 2 O 3 + 3C = 4Fe + 3CO 2

    Fe 3 O 4 + 2C = 3Fe + 2CO 2

    MnO 2 +2C = Mn + 2CO

    SnO 2 + C = Sn + 2CO 2

    ZnO + C = Zn + CO

    Cr 2 O 3 + 2Al = 2Cr + Al 2 O 3

    WO 3 + 3H 2 = W + 3H 2 O

    Если металл имеет несколько степеней окисления, то при достаточном повышении температуры становится возможным разложение оксида с выделением кислорода.

    4CuO = 2Cu 2 O + O 2

    3PbO 2 = Pb 3 O 4 + O 2 ,

    2Pb 3 O 4 = O 2 + 6PbO

    Некоторые оксиды, особенно оксиды благородных металлов, при нагревании могут разлагаться с образованием металла.

    2Ag 2 O = 4Ag + O 2

    2Au 2 O 3 = 4Au + 3O 2

    Сильные окислительные свойства некоторых оксидов используются на практике. Например,

    Окислительные свойства оксида PbO 2 используют в свинцовых аккумуляторах, в которых за счет химической реакции между PbO 2 и металлическим свинцом получают электрический ток.

    PbO 2 + Pb + 2H 2 SO 4 = 2PbSO 4 + 2H 2 O

    Окислительные свойства MnO 2 также используют для получения электрического тока в гальванических элементах (электрических батарейках).

    2MnO 2 + Zn + 2NH 4 Cl = + 2MnOOH

    Сильные окислительные свойства некоторых оксидов приводят к их своеобразному взаимодействию с кислотами. Так оксиды PbO 2 и MnO 2 при растворении в концентрированной соляной кислоте восстанавливаются.

    MnO 2 + 4HCl = MnCl 2 + Cl 2 + 2H 2 O
    Если металл образует несколько оксидов, то оксиды металла в более низкой степени окисления могут окисляться, т. е. проявлять восстановительные свойства.

    Особенно сильные восстановительные свойства проявляют оксиды металлов в низких и неустойчивых степенях окисления, как например. TiO, VO, CrO. При растворении их в воде они окисляются, восстанавливая воду. Их реакции с водой, подобны реакциям металла с водой.

    2TiO + 2H 2 O = 2TiOOH + H 2 .

  • Оксидами называются сложные вещества, в состав молекул которых входят атомы кислорода в степни окисления – 2 и какого-нибудь другого элемента.

    могут быть получены при непосредственном взаимодействии кислорода с другим элементом, так и косвенным путём (например, при разложении солей, оснований, кислот). В обычных условиях оксиды бывают в твёрдом, жидком и газообразном состоянии, этот тип соединений весьма распространён в природе. Оксиды содержатся в Земной коре. Ржавчина, песок, вода, углекислый газ – это оксиды.

    Они бывают солеобразующими и несолеобразующие.

    Солеобразующие оксиды – это такие оксиды, которые в результате химических реакций образуют соли. Это оксиды металлов и неметаллов, которые при взаимодействии с водой образуют соответствующие кислоты, а при взаимодействии с основаниями – соответствующие кислые и нормальные соли. Например, оксид меди (CuO) является оксидом солеобразующим, потому что, например, при взаимодействии её с соляной кислотой (HCl) образуется соль:

    CuO + 2HCl → CuCl 2 + H 2 O.

    В результате химических реакций можно получать и другие соли:

    CuO + SO 3 → CuSO 4 .

    Несолеобразующими оксидами называются такие оксиды, которые не образуют солей. Примером могут служить СО, N 2 O, NO.

    Солеобразующие оксиды в свою очередь бывают 3-х типов: основными (от слова « основание» ), кислотными и амфотерными.

    Основными оксидами называются такие оксиды металлов, которым соответствуют гидроксиды, относящиеся к классу оснований. К основным оксидам относятся, например, Na 2 O, K 2 O, MgO, CaO и т.д.

    Химические свойства основных оксидов

    1. Растворимые в воде основные оксиды вступают в реакцию с водой, образуя основания:

    Na 2 O + H 2 O → 2NaOH.

    2. Взаимодействуют с кислотными оксидами, образуя соответствующие соли

    Na 2 O + SO 3 → Na 2 SO 4 .

    3. Реагируют с кислотами, образуя соль и воду:

    CuO + H 2 SO 4 → CuSO 4 + H 2 O.

    4. Реагируют с амфотерными оксидами:

    Li 2 O + Al 2 O 3 → 2LiAlO 2 .

    Если в составе оксидов в качестве второго элемента будет неметалл или металл, проявляющий высшую валентность (обычно проявляют от IV до VII), то такие оксиды будут кислотными. Кислотными оксидами (ангидридами кислот) называются такие оксиды, которым соответствуют гидроксиды, относящие к классу кислот. Это, например, CO 2 , SO 3 , P 2 O 5 , N 2 O 3 , Cl 2 O 5 , Mn 2 O 7 и т.д. Кислотные оксиды растворяются в воде и щелочах, образуя при этом соль и воду.

    Химические свойства кислотных оксидов

    1. Взаимодействуют с водой, образуя кислоту:

    SO 3 + H 2 O → H 2 SO 4 .

    Но не все кислотные оксиды непосредственно реагируют с водой (SiO 2 и др.).

    2. Реагируют с основанными оксидами с образованием соли:

    CO 2 + CaO → CaCO 3

    3. Взаимодействуют со щелочами, образуя соль и воду:

    CO 2 + Ba(OH) 2 → BaCO 3 + H 2 O.

    В состав амфотерного оксида входит элемент, который обладает амфотерными свойствами. Под амфотерностью понимают способность соединений проявлять в зависимости от условий кислотные и основные свойства. Например, оксид цинка ZnO может быть как основанием, так и кислотой (Zn(OH) 2 и H 2 ZnO 2). Амфотерность выражается в том, что в зависимости от условий амфотерные оксиды проявляют либо осно́вные, либо кислотные свойства.

    Химические свойства амфотерных оксидов

    1. Взаимодействуют с кислотами, образуя соль и воду:

    ZnO + 2HCl → ZnCl 2 + H 2 O.

    2. Реагируют с твёрдыми щелочами (при сплавлении), образуя в результате реакции соль – цинкат натрия и воду:

    ZnO + 2NaOH → Na 2 ZnO 2 + H 2 O.

    При взаимодействии оксида цинка с раствором щелочи (того же NaOH) протекает другая реакция:

    ZnO + 2 NaOH + H 2 O => Na 2 .

    Координационное число – характеристика, которая определяет число ближайших частиц: атомов или инов в молекуле или кристалле . Для каждого амфотерного металла характерно свое координационное число. Для Be и Zn – это 4; Для и Al – это 4 или 6; Для и Cr – это 6 или (очень редко) 4;

    Амфотерные оксиды обычно не растворяются в воде и не реагируют с ней.

    Остались вопросы? Хотите знать больше об оксидах?
    Чтобы получить помощь репетитора – зарегистрируйтесь .
    Первый урок – бесплатно!

    сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

    При изучении химических свойств воды вы узнали, что многие оксиды (окислы) неметаллов, вступая в реакцию с водой, образуют кислоты, например:

    SO 3 + H 2 O = H 2 SO 4 + Q

    Некоторые оксиды металлов, взаимодействуя с водой, образуют основания (щелочи), например:

    CaO + H 2 O = Ca(OH) 2 + Q

    Однако свойство оксидов вступать в реакцию с водой не является общим для всех веществ этого класса. Многие оксиды, например двуокись кремния SiO 2 , оксид углерода СО, оксид азота NO, оксид меди CuO, оксид железа Fe 2 O 3 и др., не взаимодействуют с водой.

    Взаимодействие оксидов с кислотами

    Вам известно, что некоторые оксиды металлов вступают в реакцию с кислотами с образованием соли и воды, например:

    CuO + H 2 SO 4 = CuSO 4 + H 2 O

    Взаимодействие оксидов с основаниями

    Некоторые оксиды (углекислый газ СO 2 , сернистый газ SO 2 , фосфорный ангидрид Р 2 O 5 и др.) не вступают в реакцию с кислотами с образованием соли и воды. Выясним: не взаимодействуют ли они с основаниями?

    Сухую колбу наполним углекислым газом и насыплем в нее едкий натр NaOH. Закроем колбу резиновой пробкой с вставленной в нее стеклянной трубкой и надетой на ее свободный конец резиновой трубкой с зажимом. Прикоснувшись рукой к колбе, мы ощутим разогревание стекла. На внутренних стенках колбы появились капли воды. Все это – признаки химической реакции . Если углекислый газ вступил в реакцию с едким натром, то можно предполагать, что в колбе создалось разрежение. Чтобы это проверить, после того когда колба охладится до комнатной температуры, опустим конец резиновой трубки прибора в кристаллизатор с водой и откроем зажим. Вода быстро устремится в колбу. Наше предположение о разрежении в колбе подтвердилось – углекислый газ взаимодействует с едким натром. Одним из продуктов реакции является вода. Каков состав образовавшегося твердого вещества?

    NaOH + CO 2 = H 2 O + ? + Q

    Известно, что углекислому газу соответствует гидрат оксида (окисла) – угольная кислота Н 2 СO 3 . Образовавшееся в колбе твердое вещество – соль угольной кислоты – углекислый натрий Na 2 CO 3 .

    Для образования молекулы углекислого натрия потребуется две молекулы едкого натра:

    2NaOH + CO 2 = Na 2 CO 3 + H 2 O + Q

    При взаимодействии углекислого газа с едким натром получилась соль углекислый натрий Na 2 CO 3 и вода.

    Помимо углекислого газа, есть еще многие оксиды (окислы) (SO 2 , SO 3 , SiO 2 , Р 2 O 5 и др.), которые взаимодействуют со щелочами с образованием соли и воды.

    Оксидами называются сложные вещества, в состав молекул которых входят атомы кислорода в степни окисления – 2 и какого-нибудь другого элемента.

    могут быть получены при непосредственном взаимодействии кислорода с другим элементом, так и косвенным путём (например, при разложении солей, оснований, кислот). В обычных условиях оксиды бывают в твёрдом, жидком и газообразном состоянии, этот тип соединений весьма распространён в природе. Оксиды содержатся в Земной коре. Ржавчина, песок, вода, углекислый газ – это оксиды.

    Они бывают солеобразующими и несолеобразующие.

    Солеобразующие оксиды – это такие оксиды, которые в результате химических реакций образуют соли. Это оксиды металлов и неметаллов, которые при взаимодействии с водой образуют соответствующие кислоты, а при взаимодействии с основаниями – соответствующие кислые и нормальные соли. Например, оксид меди (CuO) является оксидом солеобразующим, потому что, например, при взаимодействии её с соляной кислотой (HCl) образуется соль:

    CuO + 2HCl → CuCl 2 + H 2 O.

    В результате химических реакций можно получать и другие соли:

    CuO + SO 3 → CuSO 4 .

    Несолеобразующими оксидами называются такие оксиды, которые не образуют солей. Примером могут служить СО, N 2 O, NO.

    Солеобразующие оксиды в свою очередь бывают 3-х типов: основными (от слова « основание» ), кислотными и амфотерными.

    Основными оксидами называются такие оксиды металлов, которым соответствуют гидроксиды, относящиеся к классу оснований. К основным оксидам относятся, например, Na 2 O, K 2 O, MgO, CaO и т.д.

    Химические свойства основных оксидов

    1. Растворимые в воде основные оксиды вступают в реакцию с водой, образуя основания:

    Na 2 O + H 2 O → 2NaOH.

    2. Взаимодействуют с кислотными оксидами, образуя соответствующие соли

    Na 2 O + SO 3 → Na 2 SO 4 .

    3. Реагируют с кислотами, образуя соль и воду:

    CuO + H 2 SO 4 → CuSO 4 + H 2 O.

    4. Реагируют с амфотерными оксидами:

    Li 2 O + Al 2 O 3 → 2LiAlO 2 .

    Если в составе оксидов в качестве второго элемента будет неметалл или металл, проявляющий высшую валентность (обычно проявляют от IV до VII), то такие оксиды будут кислотными. Кислотными оксидами (ангидридами кислот) называются такие оксиды, которым соответствуют гидроксиды, относящие к классу кислот. Это, например, CO 2 , SO 3 , P 2 O 5 , N 2 O 3 , Cl 2 O 5 , Mn 2 O 7 и т.д. Кислотные оксиды растворяются в воде и щелочах, образуя при этом соль и воду.

    Химические свойства кислотных оксидов

    1. Взаимодействуют с водой, образуя кислоту:

    SO 3 + H 2 O → H 2 SO 4 .

    Но не все кислотные оксиды непосредственно реагируют с водой (SiO 2 и др.).

    2. Реагируют с основанными оксидами с образованием соли:

    CO 2 + CaO → CaCO 3

    3. Взаимодействуют со щелочами, образуя соль и воду:

    CO 2 + Ba(OH) 2 → BaCO 3 + H 2 O.

    В состав амфотерного оксида входит элемент, который обладает амфотерными свойствами. Под амфотерностью понимают способность соединений проявлять в зависимости от условий кислотные и основные свойства. Например, оксид цинка ZnO может быть как основанием, так и кислотой (Zn(OH) 2 и H 2 ZnO 2). Амфотерность выражается в том, что в зависимости от условий амфотерные оксиды проявляют либо осно́вные, либо кислотные свойства.

    Химические свойства амфотерных оксидов

    1. Взаимодействуют с кислотами, образуя соль и воду:

    ZnO + 2HCl → ZnCl 2 + H 2 O.

    2. Реагируют с твёрдыми щелочами (при сплавлении), образуя в результате реакции соль – цинкат натрия и воду:

    ZnO + 2NaOH → Na 2 ZnO 2 + H 2 O.

    При взаимодействии оксида цинка с раствором щелочи (того же NaOH) протекает другая реакция:

    ZnO + 2 NaOH + H 2 O => Na 2 .

    Координационное число – характеристика, которая определяет число ближайших частиц: атомов или инов в молекуле или кристалле . Для каждого амфотерного металла характерно свое координационное число. Для Be и Zn – это 4; Для и Al – это 4 или 6; Для и Cr – это 6 или (очень редко) 4;

    Амфотерные оксиды обычно не растворяются в воде и не реагируют с ней.

    Остались вопросы? Хотите знать больше об оксидах?
    Чтобы получить помощь репетитора – .
    Первый урок – бесплатно!

    blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.