Эффект охлаждения при прохождении тока. Модуль Пельтье: технические характеристики. Получение питьевой воды с помощью модуля Пельтье

Определение 1

Статья о температурных аномалиях, которые наблюдаются на границах двух разных проводников, когда по ним течет электрический ток, была опубликована Пельтье в 1834 г. Сам Пельтье в сущности явления не разобрался, его разъяснил Ленц в 1838 г. Ленц проводил следующий опыт. В выемку на стыке стержней висмута и сурьмы он помещал каплю воды. Если ток пропускался в одном направлении, вода замерзала, в ток шел в противоположном направлении полученный лед таял. Так было установлено, что при прохождении через контакт двух проводников электрического тока, кроме джоулева тепла выделяется или поглощается (это зависит от направления тока) дополнительная теплота. Эта теплота получила название - теплота Пельтье. Процесс выделения (поглощения) дополнительной теплоты в контакте двух проводников -- носит название «явление Пельтье» . Теплота Пельтье пропорциональна первой степени силы тока, изменяет знак при изменении направления тока. Эмпирически получено, что теплоту Пельтье ($Q_P$) можно выразить с помощью формулы:

где $q$ -- заряд, $П$ -- коэффициент Пельтье, который зависит от контактирующих материалов и их температуры. $Q_P>0$, если она выделяется.

Объяснение эффекта Пельтье в классической теории

Классическая электронная теория проводимости трактовала явление Пельтье так: электроны, которые переносятся током из одного металла в другой, ускоряются или замедляются под воздействием внутренней контактной разности потенциалов между металлами. В одном случае кинетическая энергия электронов растет, а затем выделяется как теплота. В другом случае, кинетическая энергия уменьшается, и это уменьшение пополняется за счет тепловых колебаний атомов, в результате чего происходит охлаждение.

Следовало бы ожидать, что коэффициент эффекта Пельтье будет равен контактной разности потенциалов, но это не так. В соответствии с классической теорией средняя кинетическая энергия теплового движения электронов в контактирующих металлах считается одинаковой, а это не так. Дело в том, что положения уровней Ферми в разных металлах различно. Классическая теория учитывает только разницу потенциальных энергий по разные стороны границы раздела металлов, при этом считает, что кинетические энергии электронов одинаковы. Однако следует учесть изменение полной энергии электрона его при переносе из одного металла в другой.

Для большинства пар проводников коэффициент Пельтье имеет значение порядка ${10}^{-2}-\ {10}^{-3}В$ (вольт).

Эффект Пельтье для полупроводников

Эффект Пельтье, как в прочем все термоэлектронные явления, особенно сильно проявляется в цепях из электронных и дырочных полупроводников.

Допустим, что имеется контакт дырочного полупроводника и электронного, причем ток идет от дырочного проводника к электронному. В таком случае дырки в дырочном полупроводнике и электроны в электронном полупроводнике станут двигаться навстречу друг другу. Электроны, из свободных зон электронного полупроводника пройдя границу раздела, попадают в заполненную зону дырочного полупроводника и там аннигилируется с дыркой. Как следствие такой рекомбинации высвобождается энергия, которая выделяется в виде тепла в контакте полупроводников.

Рассмотрим случай, когда ток идет от электронного полупроводника к дырочному. В этом случае, электроны в электронном полупроводнике и дырки в дырочном полупроводнике движутся в противоположные стороны. Дырки, перемещающиеся от границы раздела полупроводников, пополняются в результате образования новых пар при переходе электронов из заполненной зоны дырочного полупроводника в свободную зону. На образование подобных пар необходима энергия, которая предоставляется тепловыми колебаниями атомов решетки. Под воздействием электрического поля возникающие электроны и дырки движутся в противоположные стороны. Непрерывное рождение новых пар идет пока ток течет через контакт. В результате этого процесса теплота поглощается.

Примечание 1

Явление Пельтье в полупроводниках используют в охлаждающих устройствах.

Тепло Джоуля - Ленца и тепло Пельтье

Надо отметить, что между явлением Пельтье и выделением тепла Джоуля -- Ленца есть существенные различия. Количество теплоты, которая выделяется в соответствии с законом Джоуля -- Ленца ($Q\sim I^2$) не зависит от направления тока. Теплота, которая выделяется (или поглощается) в результате эффекта Пельтье пропорциональна первой степени силы тока ($Q_P\sim I$) и изменяет знак при смене направления тока. Кроме того, тепло Джоуля - Ленца зависит от сопротивления проводника, теплота Пельтье от него не зависит.

Обычно, теплота Пельтье существенно меньше, чем тепло Джоуля -- Ленца. Для того, чтобы выявить эффект именно от явления Пельтье следует как можно сильнее уменьшить тепло Джоуля - Ленца, применяя толстые проводники с минимальным сопротивлением.

Пример 1

Количество электронов (N), которое проходит через единичную площадку, перпендикулярную к направлению тока, за $1 с$ равно:

где $j$ -- плотность тока, $q_e\ $-- заряд электрона.

Энергия электрона равна сумме его кинетической ($E_k$) и потенциальной энергий ($E_p=-q_e\varphi $). Если через $\left\langle E_k\right\rangle $ обозначить среднюю энергию для N электронов, то поток энергии ($P$) равен:

где $\left\langle E_k\right\rangle \ne \frac{3}{2}$ kT-- не равно средней кинетической энергии равновесного электронного газа, что объяснимо тем, что в случае вырожденного газа не все электроны могут ускоряться электрическим полем.

Рассмотрим проводники 1 и 2 при одинаковой температуре. К каждой единице поверхности контакта в проводнике 1 подводится в единицу времени энергия $P_1$, а отводится в проводнике 2 энергия равная $P_2$. Значения потенциалов с обеих сторон контактной плоскости равны ${\varphi }_1$ и ${\varphi }_2$. Причем ${\varphi }_1$ $\ne $ ${\varphi }_2$. Кроме того в общем случае, имеем, что:

\[\left\langle E_{k1}\right\rangle \ne \left\langle E_{k2}\right\rangle \left(1.3\right).\]

Для поддержания температуры контакта без изменений с каждой единицы поверхности в единицу времени нужно отводить (или подводить) энергию, равную $P_1-P_2.\ $Из выражения (1.3) следует, что:

Это означает, что выделяется (или поглощается) тепло Пельтье ($Q_p$). В том случае, если $S$ -- площадь контактирующих поверхностей, то тепло Пельтье равно:

\It\left(1.5\right),\]

где $I=jS$ -- сила тока. Мы знаем, что теплоту Пельтье выражают как:

Или для нашего случая из выражения (1.7) можно записать:

Сравним выражение (1.7) и формулу (1.5), получим для коэффициента Пельтье выражение:

\[П_{12}=\frac{1}{q_e}\left[\left(\left\langle E_{k2}\right\rangle -\left\langle E_{k1}\right\rangle \right)-q_e\left({\varphi }_1-\ {\varphi }_2\right)\right]\left(1.8\right).\]

Так как нас интересует тепло в контакте, и мы не рассматриваем тепло Джоуля -- Ленца в объеме, то в формуле (1.5) следует под $P_1\ и\ P_2$ понимать их значения у самой плоскости контактов. Значит выражение ${\varphi }_1-\ {\varphi }_2=U_{i12}$ - контактный скачок потенциала.

Если электронный газ в проводниках является невырожденным, то ускоряются полем все электроны. Распределение импульсов описывается законом Максвелла, и оно зависит только от температуры, тогда $\left\langle E_{k2}\right\rangle =\left\langle E_{k1}\right\rangle $, следовательно:

\[П_{12}=ц_1-\ ц_2=U_{i12}.\ \]

В таком случае, коэффициент Пельтье равен контактному скачку потенциала, при этом тепло Пельтье равно работе, которую совершает ток из-за перепада напряжений.

Что и требовалось показать.

Пример 2

Задание: Чему равен коэффициент Пельтье при температуре T=0 K (случай сильно вырожденного электронного газа)?

В состоянии сильного вырождения (T=0 K) все квантовые состояния в зоне проводимости с энергией, которая меньше уровня Ферми полностью заняты электронами. При этом ускоряться полем могут только электроны, которые имею энергии равную энергии Ферми (в первом приближении энергию Ферми примем равной химическому потенциалу $\mu $). Поэтому в формуле для коэффициента Пельтье, которую мы получили в предыдущем примере:

\[П_{12}=\frac{1}{q_e}\left[\left(\left\langle E_{k2}\right\rangle -\left\langle E_{k1}\right\rangle \right)-q_e\left({\varphi }_1-\ {\varphi }_2\right)\right]\left(2.1\right)\]

под $\left\langle E_{k2}\right\rangle \ и\ \left\langle E_{k1}\right\rangle $ надо понимать максимальные кинетические энергии электронов и принять, что:

\[\left\langle E_{k2}\right\rangle ={\mu }_2,\ \left\langle E_{k1}\right\rangle {=\mu }_1\left(2.2\right).\]

С другой стороны мы знаем, что:

Подставим выражения (2.3) и (2.2)

в формулу (2.1), получим:

\[П_{12}=\frac{1}{q_e}\left[\left(м_2-м_1\right)-\left(м_1-м_2\right)\right]=0.\]

Ответ: При $T$=0 $K$, $П_{12}=0\ В.$

Начало 19 столетия. Золотой век физики и электротехники. В 1834 году французский часовщик и естествоиспытатель Жан-Шарль Пельтье поместил каплю воды между электродами из висмута и сурьмы, а затем пропустил по цепи электрический ток. К своему изумлению, он увидел, что капля неожиданно замерзла.

О тепловом действии электрического тока на проводники было известно, а вот обратный эффект был сродни магии. Можно понять чувства Пельтье: это явление на стыке двух разных областей физики - термодинамики и электричества вызывает ощущение чуда и сегодня.

Проблема охлаждения тогда не была такой острой, как сегодня. Поэтому к эффекту Пельтье обратились только спустя почти два столетия, когда появились электронные устройства, для работы которых потребовались миниатюрные системы охлаждения. Достоинством охлаждающих элементов Пельтье являются малые габариты, отсутствие движущихся деталей, возможность каскадного соединения для получения больших перепадов температур.

Кроме этого, эффект Пельтье обратим: при перемене полярности тока через модуль, охлаждение сменяется нагреванием, поэтому на нем легко реализуются системы точного поддержания температуры - термостаты . Недостатком элементов (модулей) Пельтье является низкий КПД, что требует подведения больших значений тока для получения заметного перепада температур. Сложность представляет и отвод тепла от пластины, противоположной охлаждаемой плоскости.

Но обо всем по-порядку. Для начала попытаемся рассмотреть физические процессы, ответственные за наблюдаемое явление. Не погружаясь в пучину математических выкладок, постараемся просто на «пальцах» понять природу этого интересного физического явления.

Поскольку речь идет о температурных явлениях, физики, для удобства математического описания, заменяют колебания атомной решетки материала неким газом, состоящим из как бы частиц - фононов.

Температура фононного газа зависит от температуры окружающей среды и свойств металла. Тогда любой металл - это смесь электронного и фононного газов, находящихся в термодинамическом равновесии.При контакте двух разных металлов в отсутствии внешнего поля более “горячий” электронный газ проникает в зону более “холодного”, создавая известную всем контактную разность потенциалов.

При прикладывании разности потенциалов к переходу, т.е. протекании тока через границу двух металлов, электроны забирают энергию у фононов одного металла и передают ее фононному газу другого. При смене полярности передача энергии, а значит, нагрев и охлаждение меняют знак.

В полупроводниках за перенос энергии отвечают электроны и “дырки”, но механизм переноса тепла и появления разности температур сохраняется. Разность температур увеличивается до тех пор, пока не истощатся высокоэнергетичные электроны. Наступает температурное равновесие. Такова современная картина описания эффекта Пельтье .

Из нее понятно, что эффективность работы элемента Пельтье зависит от подбора пары материалов, силы тока и скорости отвода тепла от горячей зоны. Для современных материалов (как правило, это полупроводники) КПД составляет 5-8%.

А теперь о практическом применении эффекта Пельтье. Для его увеличения отдельные термопары (спаи двух различных материалов) собираются в группы, состоящие из десятков и сотен элементов. Основное назначение таких модулей - это охлаждение небольших объектов или микросхем.

Термоэлектрический охлаждающий модуль

Широкое применение модули на эффекте Пельтье нашли в приборах ночного видения с матрицей инфракрасных приемников. Микросхемы с зарядовой связью (ПЗС), которые сегодня применяют и в цифровых фотоаппаратах, требуют глубокого охлаждения для регистрации изображения в инфракрасной области. Модули Пельтье охлаждают инфракрасные детекторы в телескопах, активные элементы лазеров для стабилизации частоты излучения, в системах точного времени. Но это все применения военного и специального назначения.

С недавних пор модули Пельтье нашли применение и в бытовых изделиях. Преимущественно, в автомобильной технике: кондиционеры, переносные холодильники, охладители воды.

Пример практического использования эффекта Пельтье

Наиболее интересным и перспективным применением модулей является компьютерная техника. Высокопроизводительные микропроцессоры процессоры и чипы видеокарт выделяют большое количество тепла. Для их охлаждения применяют высокоскоростные вентиляторы, которые создают значительные акустические шумы. Применение модулей Пельтье в составе комбинированных систем охлаждения устраняют шум при значительном отборе тепла.

Компактный USB-холодильник с использованием модулей Пельтье

И, наконец, закономерный вопрос: заменят ли модули Пельтье привычные системы охлаждения в компрессионных бытовых холодильниках? На сегодняшний день это невыгодно с точки зрения эффективности (малый КПД) и цены. Стоимость мощных модулей еще достаточно высока.

Но техника и материаловедение не стоят на месте. Исключить возможность появления новых, более дешевых материалов с большим КПД и высоким значением коэффициентом Пельтье нельзя. Уже сегодня появляются сообщения из исследовательских лабораторий об удивительных свойствах наноуглеродных материалов, которые радикально смогут изменить ситуацию с эффективными системами охлаждения.

Появились сообщения о высокой термоэлектрической эффективности кластратов - твердотельных растворов, похожих по строению на гидраты. Когда эти материалы выйдут из исследовательских лабораторий, то совершенно бесшумные холодильники с неограниченным сроком службы заменят наши привычные домашние модели.

P.S. Одной из самых интересных особенностей термоэлектрической технологии является то, что она может не только использовать электрическую энергию для получения тепла и холода, но также благодаря ей можно запустить обратный процесс, и, например, из тепла получить электрическую энергию .

Пример того, как можно получить электроэнергию из тепла с использованием термоэлектрического модуля () смотрите на этом видео:

А что Вы думаете по этому поводу? Жду Ваших комментариев!

Андрей Повный

Если через пограничную область между двумя соприкасающимися различными металлами пропустить электрический ток, то электроны, проходя через эту область, будут в зависимости от направления тока либо ускоряться указанным выше контактным полем либо тормозиться им. В первом случае в пограничном слое наблюдается выделение тепла (электроны, получившие кинетическую энергию, будут при столкновениях передавать энергию атомам металла); во втором случае - поглощение тепла (электроны, потерявшие скорость, будут

при столкновениях с атомами получать от них энергию, т. е. охлаждать металл). Если, например, через термоэлемент (рис. II 1.37) при пропустить электрический ток, то температуры контактов начнут изменяться, так как в одном из них поле совершает положительную работу, а в другом - отрицательную. Выделение или поглощение тепла при прохождении тока через пограничную рбласть, обусловленное работой контактного электрического поля называется эффектом Пельтье; количество тепла за время при постоянной силе тока

где есть, как указывалось выше, разность потенциалов, обусловленная полем количество прошедшего электричества, а постоянная термоэлектродвижущей силы.

Итак, при прохождении электрического тока через пограничную область между двумя металлами происходят следующие явления:

1) выделение некоторого количества тепла по закону Ленца-Джоуля: где сопротивление пограничной области. Это тепло не зависит от направления тока и пропорционально квадрату силы тока;

2) выделение или поглощение тепла, вызванное положительной или отрицательной работой контактного электрического поля (эффект Пельтье). Это тепло пропорционально первой степени силы тока. При малых значениях тока теплота может оказаться больше, чем

3) перенос энергии из одного металла в другой вместе с перешедшими через пограничную область электронами. Средние кинетические энергии электронов в различных металлах (при одинаковой температуре) могут быть различными, поэтому электронов, перешедших из одного металла в другой перенесут с собой энергию

Заметим, что указанное выделение и поглощение тепла в контактах происходит и в том случае, когда в цепи термоэлемента течет электрический ток, вызванный не посторонним источником тока, а самой термоэлектродвижущей силой (при ); при этом в контакте с высокой температурой происходит поглощение тепла, а в контакте с низкой температурой - выделение тепла. Таким образом, эффект Пельтье направлен к выравниванию разности температур в контактах. Если создание разности температур контактов рассматривать как внешнее воздействие на термоэлемент, то эффект Пельтье есть противодействующая ему реакция этого элемента.

Термоэлемент при можно рассматривать как физическую систему, в которой происходит непосредственное превращение теплоты в электрическую энергию. Допустим, что в цепи термоэлемента сила тока равна Работа, совершаемая термоэлектродвижущей силой

(см. формулу (2.34)) за время

Однако теплота, поглощенная (по эффекту Пельтье) в контакте с высокой температурой, теплота, выделяющаяся в контакте с низкой температурой; разность между ними превращается в электрическую энергию. Поэтому коэффициент полезного действия термоэлемента

Таким образом, в полном согласии со вторым знаком термодинамики, в термоэлементе происходит получение тепла от тела с высокой температурой, передача некоторого количества тепла телу с низкой температурой и превращение разности в другой вид энергии. Однако в случае термоэлемента из металлов значительная часть тепла переходит от горячего контакта к холодному путем теплопроводности, поэтому количество теплоты, превращенное в электрическую энергию, даже при большой разности температур контактов, составляет лишь весьма малую часть (доли процента) полного количества тепла, перешедшего от горячего контакта к холодному. При применении, по предложению А. Ф. Иоффе, полупроводниковых материалов с малой теплопроводностью можно приблизить коэффициент полезного действия термоэлектрической тепловой машины к ее идеальному значению.

Выше рассматривались только металлические проводники (проводники первого рода), у которых появление контактной разности потенциалов и прохождение электрического тока не сопровождается никакими химическими изменениями. Однако контактная разность потенциалов обнаруживается и в системе любых проводников, включая, например, электролиты (проводники второго рода), в которых возбуждение разности потенциалов и прохождение тока сопровождается химическими реакциями (гальванические элементы, аккумуляторы). В отличие от металлических проводников, в системе, содержащей электролиты, на заряды (электроны, ионы) действуют особые силы «химического» происхождения. Благодаря наличию этих сторонних сил в замкнутой системе проводников, содержащих электролиты, происходит непрерывный односторонний перенос зарядов, т. е. существует электрический ток.


Пельтье эффект Пельтье́ эффе́кт

выделение или поглощение теплоты при прохождении тока через контакт (спай) двух разных проводников. Количество теплоты пропорционально силе тока. Используется в холодильных установках. Открыт в 1834 Ж. Пельтье.

ПЕЛЬТЬЕ ЭФФЕКТ

ПЕЛЬТЬЕ́ ЭФФЕ́КТ, для термоэлектрических явлений (см. ТЕРМОЭЛЕКТРИЧЕСКИЕ ЯВЛЕНИЯ) , заключается в выделении или поглощении теплоты при прохождении электрического тока через контакт (спай) двух разных проводников. Эффект Пельтье является обратным эффекту Зеебека (см. ЗЕЕБЕКА ЭФФЕКТ) .
Открыт в 1834 г. Ж. Пельтье (см. ПЕЛЬТЬЕ Жан Шарль Атаназ) , который обнаружил, что при прохождении тока через спай двух разных проводников температура спая изменяется. В 1838 г. Э. Х. Ленц (см. ЛЕНЦ Эмилий Христианович) показал, что при достаточно большой силе тока можно либо заморозить, либо довести до кипения каплю воды, нанесенную на спай, изменяя направление тока.
Сущность эффекта Пельтье состоит в том, что при прохождении электрического тока через контакт двух металлов или полупроводников в области их контакта в дополнение к обычному джоулеву теплу выделяется или поглощается дополнительное количество тепла, называемого теплом Пельтье Q п. В отличие от джоулева тепла, которое пропорционально квадрату силы тока, величина Q п пропорциональна первой степени тока.
Q п = П. I . t.
t - время прохождения тока,
I - сила тока.
П - коэффициент Пельтье, коэффициент пропорциональности, зависящий от природы материалов, образующих контакт. Теоретические представления позволяют выразить коэффициент Пельтье через микроскопические характеристики электронов проводимости.
Коэффициент Пельтье П = Т Da, где Т - абсолютная температура, а Da - разность термоэлектрических коэффициентов проводников. От направления тока зависит, выделяется или поглощается тепло Пельтье.
Причина возникновения эффекта заключается в том, что в случае контакта металлов или полупроводников на границе возникает внутренняя контактная разность потенциалов. Это приводит к тому, что потенциальная энергия носителей по обе стороны контакта становится различной, так как средняя энергия носителей тока зависит от их энергетического спектра, концентрации и механизмов их рассеяния и различна в разных проводниках. Так как средняя энергия электронов, участвующих в переносе тока, в разных проводниках различается, в процессе соударений с ионами решетки носители отдают избыток кинетической энергии решетке, и тепло выделяется. Если при переходе через контакт потенциальная энергия носителей уменьшается, то увеличивается их кинетическая энергия и электроны, сталкиваясь с ионами решетки, увеличивают свою энергия до среднего значения, при этом тепло Пельтье поглощается. Таким образом, при переходе электронов через контакт электроны либо передают избыточную энергия атомам, либо пополняют ее за их счет.
При переходе электронов из полупроводника в металл энергия электронов проводимости полупроводника значительно выше уровня Ферми (см. Ферми энергия (см. ФЕРМИ-ЭНЕРГИЯ) ) металла, и электроны отдают свою избыточную энергию. Эффект Пельтье особенно велик у полупроводников, что используется для создания охлаждающих и обогревающих полупроводниковых приборов, в том числе для создания микрохолодильников в холодильных установках.


Энциклопедический словарь . 2009 .

Смотреть что такое "Пельтье эффект" в других словарях:

    Выделение или поглощение теплоты при прохождении электрич. тока I через контакт двух разл. проводников. Выделение теплоты сменяется поглощением при изменении направления тока. Открыт франц. физиком Ж. Пельтье (J. Peltier) в 1834. Кол во теплоты… … Физическая энциклопедия

    Эффект Пельтье процесс выделения или поглощения тепла при прохождении электрического тока через контакт двух разнородных проводников. Величина выделяемого тепла и его знак зависят от вида контактирующих веществ, силы тока и времени прохождения… … Википедия

    Выделение или поглощение теплоты при прохождении тока через контакт (спай) двух разных проводников. Количество теплоты пропорционально силе тока. Используется в холодильных установках. Открыт в 1834 Ж. Пельтье … Большой Энциклопедический словарь

    Выделение или поглощение тепла при прохождении электрического тока через контакт (спай) двух различных проводников. Выделение тепла сменяется поглощением при изменении направления тока. Открыт Ж. Пельтье в 1834. Количество выделенного или … Большая советская энциклопедия

    Эффект Пельтье термоэлектрическое явление, при котором происходит выделение или поглощение тепла при прохождении электрического тока в месте контакта (спая) двух разнородных проводников. Величина выделяемого тепла и его знак зависят от вида … Википедия

Термопреобразователь (модуль Пельтье) работает по принципу, обратному действию термопары, - появлению разности температур, когда протекает электрический ток.

Как работает элемент Пельтье?

Довольно просто применять модуль Пельтье, принцип работы которого заключается в выделении или поглощении тепла в момент контакта разных материалов при прохождении через него энергетического потока электронов перед контактом и после него отличается. Если на выходе она меньше, значит, там выделяется тепло. Когда электроны в контакте тормозятся электрическим полем, они передают кинетическую энергию кристаллической решетке, разогревая ее. Если они ускоряются, тепло поглощается. Это происходит за счет того, что часть энергии забирается у кристаллической решетки и происходит ее охлаждение.

В значительной степени это явление присуще полупроводникам, что объясняется большой разностью зарядов.

Модуль Пельтье, применение которого является темой нашего обзора, используется при создании термоэлектрических охлаждающих устройств (ТЭМ). Простейшее из них состоит из двух полупроводников p- и n-типов, последовательно соединенных через медные контакты.

Если электроны движутся от полупроводника "p" к "n", на первом переходе с металлической перемычкой они рекомбинируют с выделением энергии. Следующий переход из полупроводника "p" в медный проводник сопровождается "вытягиванием" электронов через контакт электрическим полем. Данный процесс приводит к поглощению энергии и охлаждению области вокруг контакта. Аналогичным образом происходят процессы на следующих переходах.

При расположении нагреваемых и охлаждаемых контактов в разных параллельных плоскостях получится практическая реализация способа. Полупроводники изготавливаются из селена, висмута, сурьмы или теллура. Модуль Пельтье вмещает большое количество термопар, размещенных между керамическими пластинами из нитрида или оксида алюминия.

Факторы, влияющие на эффективность ТЭМ

  • Сила тока.
  • Количество термопар (до нескольких сотен).
  • Типы полупроводников.
  • Скорость охлаждения.

Больших величин достигнуть пока не удалось из-за низкого КПД (5-8 %) и высокой стоимости. Чтобы ТЭМ успешно работал, надо обеспечить эффективный отвод тепла с нагреваемой стороны. Это создает сложности в практическом воплощении способа. Если изменить полярность, холодная и горячая стороны меняются друг с другом.

Достоинства и недостатки модулей

Потребность в ТЭМ появилась с возникновением электронных устройств, нуждающихся в миниатюрных системах охлаждения. Преимущества модулей следующие:

  • компактность;
  • отсутствие подвижных соединений;
  • модуль Пельтье принцип работы имеет обратимый при смене полярности;
  • простота каскадных соединений для повышения мощности.

Главным недостатком модуля является низкий КПД. Это проявляется в больших затратах мощности при достижении требуемого эффекта охлаждения. Кроме того, он обладает высокой стоимостью.

Применение ТЭМ

Пельтье модуль применяется преимущественно для охлаждения микросхем и небольших деталей. Начало было положено для охлаждения элементов военной техники:

  • микросхемы;
  • инфракрасные детекторы;
  • элементы лазеров;
  • кварцевые генераторы.

Термоэлектрический модуль Пельтье постепенно стал применяться в бытовой технике: для создания холодильников, кондиционеров, генераторов, терморегуляторов. Главным его назначением является охлаждение небольших объектов.

Охлаждение процессора

Основные компоненты компьютеров постоянно совершенствуются, что приводит к росту тепловыделения. Вместе с ними развиваются системы охлаждения с применением новаторских технологий, с современными средствами контроля. Модуль Пельтье применение в данной сфере нашел прежде всего в охлаждении микросхем и других радиодеталей. С форсированными режимами разгона микропроцессоров традиционные кулеры уже не справляются. А увеличение частоты работы процессоров дает возможность повысить их быстродействие.

Увеличение скорости вращения вентилятора приводит к значительному шуму. Его устраняют за счет использования модуля Пельтье в комбинированной системе охлаждения. Таким путем передовые фирмы быстро освоили производство эффективных охлаждающих систем, которые стали пользоваться большим спросом.

С процессоров тепло обычно отводится кулерами. Воздушный поток может засасываться снаружи или поступать изнутри системного блока. Главная проблема состоит в том, что температура воздуха порой оказывается недостаточной для теплоотвода. Поэтому ТЭМ стали использовать для охлаждения потока воздуха, поступающего в системный блок, тем самым повышая эффективность теплообмена. Таким образом, встроенный воздушный кондиционер является помощником традиционной системы охлаждения компьютера.

С обеих сторон модуля крепятся алюминиевые радиаторы. Со стороны холодной пластины нагнетается воздух на охлаждение к процессору. После того как он заберет тепло, его выдувает другой вентилятор через радиатор горячей пластины модуля.

Современный ТЭМ управляется электронным устройством с датчиком температуры, где степень охлаждения пропорциональна разогреву процессора.

Активизация охлаждения процессоров создает также некоторые проблемы.

  1. Простые охлаждающие модули Пельтье предназначены для непрерывной работы. При пониженном энергопотреблении также уменьшается тепловыделение, что может вызвать переохлаждение кристалла и последующее зависание процессора.
  2. Если работа кулера и холодильника не будет должным образом согласована, последний может перейти в режим нагрева вместо охлаждения. Источник дополнительного тепла вызовет перегрев процессора.

Таким образом, для современных процессоров нужны передовые технологии охлаждения с контролем работы самих модулей. Подобные изменения режимов работы не происходят с видеокартами, которые также требуют интенсивного охлаждения. Поэтому для них ТЭМ подходит идеально.

Автохолодильник своими руками

В середине прошлого века отечественная промышленность пыталась освоить выпуск малогабаритных холодильников, основанных на эффекте Пельтье. Существующие технологии того времени не позволили этого сделать. Сейчас сдерживающим фактором преимущественно является высокая цена, но попытки продолжаются, и успехи здесь уже достигнуты.

Широкое производство термоэлектрических устройств позволяет создать своими руками небольшой холодильник, удобный для использования в автомобилях. Его основой является "сэндвич", который делается следующим образом.

  1. На верхний радиатор наносится слой теплопроводной пасты типа КПТ-8 и приклеивается Пельтье модуль с одной стороны керамической поверхности.
  2. Аналогично к нему крепится с нижней стороны другой радиатор, предназначенный для помещения в камеру холодильника.
  3. Все устройство плотно сжимается и просушивается в течение 4-5 часов.
  4. На обоих радиаторах устанавливаются кулеры: верхний будет отводить тепло, а нижний - выравнивать температуру в камере холодильника.

Корпус холодильника делается с теплоизолирующей прокладкой внутри. Важно, чтобы он плотно закрывался. Для этого можно использовать обычный пластиковый ящик для инструментов.

Питание 12 В подается из системы автомобиля. Его можно сделать и от сети 220 В переменного тока, с блоком питания. Схема преобразования переменного тока в постоянной применяется самая простая. Она содержит выпрямительный мост и сглаживающий пульсации конденсатор. При этом важно, чтобы на выходе они не превышали величину 5 % от номинального значения, иначе эффективность устройства снижается. У модуля имеются два вывода из цветных проводов. К красному всегда подключается "плюс", к черному - "минус".

Мощность ТЭМ должна соответствовать объему бокса. Первые 3 цифры маркировки означают количество пар полупроводниковых микроэлементов внутри модуля (49-127 и более). выражается двумя последними цифрами маркировки (от 3 до 15 А). Если мощности недостаточно, надо приклеить на радиаторы еще один модуль.

Обратите внимание! Если сила тока будет превосходить мощность элемента, он будет нагреваться с обеих сторон и быстро выйдет из строя.

Модуль Пельтье: генератор электрической энергии

ТЭМ можно использовать для выработки электроэнергии. Для этого надо создать перепад температуры между пластинами, и расположенные между ними термопары будут вырабатывать электрический ток.

Для практического использования нужен ТЭМ не менее чем на 5 В. Тогда с его помощью можно будет заряжать мобильный телефон. Из-за низкого КПД модуля Пельтье потребуется повышающий преобразователь постоянного напряжения. Для сборки генератора понадобятся:

  • 2 модуля Пельтье ТЕС1-12705 с размером пластин 40х40 мм;
  • преобразователь ЕК-1674;
  • алюминиевые пластины толщиной 3 мм;
  • кастрюля для воды;
  • термостойкий клей.

Между пластинами помещаются два модуля на клей, а затем вся конструкция фиксируется на дне кастрюли. Если ее заполнить водой и поставить на огонь, получится необходимая разность температуры, вырабатывающая ЭДС порядка 1,5 В. Подключив модули к повышающему преобразователю, можно повысить напряжение до 5 В, необходимых для зарядки аккумулятора телефона.

Чем больше разница температуры между водой и нижней подогреваемой пластиной, тем генератор работает эффективней. Поэтому надо стараться снижать нагрев воды разными способами: сделать ее проточной, почаще заменять свежей и т. п. Действенным средством увеличения разности температур является каскадное включение модулей, когда они накладываются слоями один на другой. Увеличение габаритных размеров устройства позволяет поместить между пластинами больше элементов и тем самым увеличить общую мощность.

Производительности генератора будет достаточно для зарядки небольших аккумуляторов, работы светодиодных ламп или радиоприемника. Обратите внимание! Для создания термогенераторов потребуются модули, способные работать при 300-400 0 С! Остальные подойдут только для пробных испытаний.

В отличие от других средств альтернативного получения электроэнергии они могут работать во время движения, если создать что-то типа каталитического нагревателя.

Отечественные модули Пельтье

ТЭМ своего производства появились у нас на рынке не так давно. Они отличаются высокой надежностью и имеют хорошие характеристики. Модуль Пельтье, который пользуется широким спросом, имеет размеры 40х40 мм. Он рассчитан на максимальный ток 6 А и напряжение до 15 В.

Отечественный модуль Пельтье купить можно за небольшую цену. При 85 Вт он создает температурный перепад 60 0 С. Вместе с кулером он способен защитить от перегрева процессор с рассеиваемой мощностью 40 Вт.

Характеристики модулей ведущих фирм

Зарубежные устройства представлены на рынке в большем разнообразии. Для защиты процессоров ведущих фирм применяется в качестве холодильника РАХ56В модуль Пельтье, цена которого в комплекте с вентилятором составляет $35.

При размерах 30х30 мм он поддерживает температуру процессора не выше 63 0 С при выделяемой мощности 25 Вт. Для питания достаточно напряжения 5 В, а ток не превышает 1,5 А.

Хорошо подходит под охлаждение процессора модуль Пельтье РА6ЕХВ, обеспечивающий нормальный температурный режим при мощности рассеивания 40 Вт. Площадь его модуля составляет 40х40 мм, а потребляемый ток - до 8 А. Кроме внушительных размеров - 60х60х52,5 мм (вместе с вентилятором) - устройство требует наличия вокруг него свободного пространства. Цена его составляет $65.

Когда применяется модуль Пельтье, технические характеристики у него должны соответствовать потребностям охлаждаемых устройств. Недопустимо, чтобы у них была слишком низкая температура. Это может привести к конденсации влаги, которая губительно действует на электронику.

Модули для изготовления генераторов, такие как отличаются большей мощностью - 72 Вт и 108 Вт соответственно. Их различают по маркировке, всегда наносимой на горячую сторону. Максимальная допускаемая температура горячей стороны у них составляет 150-160 0 С. Чем больше температурный перепад между пластинами, тем выше получается напряжение на выходе. Устройство работает при максимальном температурном перепаде 600 0 С.

Модуль Пельтье купить можно недорого - порядка $10 и менее за штуку, если хорошо поискать. Довольно часто продавцы значительно завышают цены, но можно найти в несколько раз дешевле, если приобретать на распродаже.

Заключение

Эффект Пельтье нашел применение в настоящее время в создании небольших холодильников, необходимых современной технике. Обратимость процесса дает возможность изготовить микроэлектростанции, востребованные для зарядки аккумуляторов электронных устройств.

В отличие от других средств альтернативного получения электроэнергии, они могут работать во время движения, если установить каталитический нагреватель.