Неопределенный интеграл определение и простейшие свойства. Основные свойства неопределенного интеграла. Инвариантность форм интегрирования

Первообразная и неопределенный интеграл.

Первообразной функции f(x) на промежутке (a; b) называется такая функция F(x), что выполняется равенство для любого х из заданного промежутка.

Если принять во внимание тот факт, что производная от константы С равна нулю, то справедливо равенство . Таким образом, функция f(x) имеет множество первообразных F(x)+C, для произвольной константы С, причем эти первообразные отличаются друг от друга на произвольную постоянную величину.

Все множество первообразных функции f(x) называется неопределенным интегралом этой функции и обозначается .

Выражение называют подынтегральным выражением, а f(x) – подынтегральной функцией. Подынтегральное выражение представляет собой дифференциал функции f(x).

Действие нахождения неизвестной функции по заданному ее дифференциалу называется неопределенным интегрированием, потому что результатом интегрирования является не одна функция F(x), а множество ее первообразных F(x)+C.

Табличные интегралы


Простейшие свойства интегралов

1. Производная результата интегрирования равна подынтегральной функции.

2. Неопределенный интеграл дифференциала функции равен сумме самой функции и произвольной константы.

3. Коэффициент можно выносить за знак неопределенного интеграла.

4. Неопределенный интеграл суммы/разности функций равен сумме/разности неопределенных интегралов функций.

Промежуточные равенства первого и второго свойств неопределенного интеграла приведены для пояснения.

Для доказательства третьего и четвертого свойств достаточно найти производные от правых частей равенств:

Эти производные равны подынтегральным функциям, что и является доказательством в силу первого свойства. Оно же используется в последних переходах.

Таким образом, задача интегрирования является обратной задаче дифференцирования, причем между этими задачами очень тесная связь:

первое свойство позволяет проводить проверку интегрирования. Чтобы проверить правильность выполненного интегрирования достаточно вычислить производную полученного результата. Если полученная в результате дифференцирования функция окажется равной подынтегральной функции, то это будет означать, что интегрирование проведено верно;



второе свойство неопределенного интеграла позволяет по известному дифференциалу функции найти ее первообразную. На этом свойстве основано непосредственное вычисление неопределенных интегралов.

1.4.Инвариантность форм интегрирования.

Инвариантное интегрирование - вид интегрирования для функций, аргументом которых являются элементы группы или точки однородного пространства (любую точку такого пространства можно перевести в другую заданным действием группы).

функции f(x)сводится к вычислению интеграла от дифференциальной формы f.w, где

Явная ф-ла для r(х)приводится ниже. Условие согласования имеет вид .

здесь Tg означает оператор сдвига на X с помощью gОG: Tgf(x)=f(g-1x). Пусть X=G - топология, группа, действующая на себе левыми сдвигами. И. и. существует тогда и только тогда, когда G локально компактна (в частности, на бесконечномерных группах И. и. не существует). Для подмножества И. и. характеристических функции cA (равной 1 на A и 0 вне А)задаёт левую меру Xаара m(A). Определяющим свойством этой меры является её инвариантность при левых сдвигах: m(g-1A)=m(А)для всех gОG. Левая мера Хаара на группе определена однозначно с точностью до положит, скалярного множителя. Если известна мера Хаара m, то И. и. функции f даётся формулой . Аналогичными свойствами обладает правая мера Хаара. Существует непрерывный гомоморфизм (отображение, сохраняющее групповое свойство) DG группы G в группу (относительно умножения) положит. чисел, для которого

где dmr и dmi - правая и левая меры Хаара. Функцию DG(g) наз. модулем группы G. Если , то группа G наз. унимодулярной; в этом случае правая и левая меры Хаара совпадают. Компактные, полупростые и нильпотентные (в частности, коммутативные) группы унимодулярны. Если G - n-мерная группа Ли и q1, ...,qn - базис в пространстве левоинвариантных 1-форм на G, то левая мера Хаара на G задаётся n-формой . В локальных координатах для вычисления

форм qi можно воспользоваться любой матричной реализацией группы G: матричная 1-форма g-1dg левоинвариантна, а её коэф. являются левоинвариантными скалярными 1-формами, из которых и выбирается искомый базис. Напр., полная матричная группа GL(n, R)унимодулярна и мера Хаара на ней задаётся формой. Пусть X=G/H - однородное пространство, для которого локально компактная группа G является группой преобразований, а замкнутая подгруппа Н - стабилизатором некоторой точки. Для того чтобы на X существовало И. и., необходимо и достаточно, чтобы для всех hОH выполнялось равенство DG(h)=DH(h). В частности, это верно в случае, когда Н компактна или полупроста. Полной теории И. и. на бесконечномерных многообразиях не существует.

Замена переменных.

Пусть функция y = f (x ) определена на отрезке [a , b ], a < b . Выполним следующие операции:

1) разобьем [a , b ] точками a = x 0 < x 1 < ... < x i - 1 < x i < ... < x n = b на n частичных отрезков [x 0 , x 1 ], [x 1 , x 2 ], ..., [x i - 1 , x i ], ..., [x n - 1 , x n ];

2) в каждом из частичных отрезков [x i - 1 , x i ], i = 1, 2, ... n , выберем произвольную точку и вычислим значение функции в этой точке: f (z i ) ;

3) найдем произведения f (z i ) · Δx i , где – длина частичного отрезка [x i - 1 , x i ], i = 1, 2, ... n ;

4) составиминтегральную сумму функции y = f (x ) на отрезке [a , b ]:

С геометрической точки зрения эта сумма σ представляет собой сумму площадей прямоугольников, основания которых – частичные отрезки [x 0 , x 1 ], [x 1 , x 2 ], ..., [x i - 1 , x i ], ..., [x n - 1 , x n ], а высоты равны f (z 1 ) , f (z 2 ), ..., f (z n ) соответственно (рис. 1). Обозначим через λ длину наибольшего частичного отрезка:

5) найдем предел интегральной суммы, когда λ → 0.

Определение. Если существует конечный предел интегральной суммы (1) и он не зависит ни от способа разбиения отрезка [a , b ] на частичные отрезки, ни от выбора точек z i в них, то этот предел называется определенным интегралом от функции y = f (x ) на отрезке [a , b ] и обозначается

Таким образом,

В этом случае функция f (x ) называется интегрируемой на [a , b ]. Числа a и b называются соответственно нижним и верхним пределами интегрирования, f (x ) – подынтегральной функцией, f (x ) dx – подынтегральным выражением, x – переменной интегрирования; отрезок [a , b ] называется промежутком интегрирования.

Теорема 1. Если функция y = f (x ) непрерывна на отрезке [a , b ], то она интегрируема на этом отрезке.

Определенный интеграл с одинаковыми пределами интегрирования равен нулю:

Если a > b , то, по определению, полагаем

2. Геометрический смысл определенного интеграла

Пусть на отрезке [a , b ] задана непрерывная неотрицательная функция y = f (x ) . Криволинейной трапецией называется фигура, ограниченная сверху графиком функции y = f (x ) , снизу – осью Ох, слева и справа – прямыми x = a и x = b (рис. 2).

Определенный интеграл от неотрицательной функции y = f (x ) с геометрической точки зрения равен площади криволинейной трапеции, ограниченной сверху графиком функции y = f (x ) , слева и справа – отрезками прямых x = a и x = b , снизу – отрезком оси Ох.

3. Основные свойства определенного интеграла

1. Значение определенного интеграла не зависит от обозначения переменной интегрирования:

2. Постоянный множитель можно выносить за знак определенного интеграла:

3. Определенный интеграл от алгебраической суммы двух функций равен алгебраической сумме определенных интегралов от этих функций:

4.Если функция y = f (x ) интегрируема на [a , b ] и a < b < c , то

5. (теорема о среднем) . Если функция y = f (x ) непрерывна на отрезке [a , b ], то на этом отрезке существует точка , такая, что

4. Формула Ньютона–Лейбница

Теорема 2. Если функция y = f (x ) непрерывна на отрезке [a , b ] и F (x ) – какая-либо ее первообразная на этом отрезке, то справедлива следующая формула:

которая называется формулой Ньютона–Лейбница. Разность F (b ) - F (a ) принято записывать следующим образом:

где символ называется знаком двойной подстановки.

Таким образом, формулу (2) можно записать в виде:

Пример 1. Вычислить интеграл

Решение. Для подынтегральной функции f (x ) = x 2 произвольная первообразная имеет вид

Так как в формуле Ньютона-Лейбница можно использовать любую первообразную, то для вычисления интеграла возьмем первообразную, имеющую наиболее простой вид:

5. Замена переменной в определенном интеграле

Теорема 3. Пусть функция y = f (x ) непрерывна на отрезке [a , b ]. Если:

1) функция x = φ (t ) и ее производная φ "(t ) непрерывны при ;

2) множеством значений функции x = φ (t ) при является отрезок [a , b ];

3) φ (a ) = a , φ (b ) = b , то справедлива формула

которая называется формулой замены переменной в определенном интеграле.

В отличие от неопределенного интеграла, в данном случае нет необходимости возвращаться к исходной переменной интегрирования – достаточно лишь найти новые пределы интегрирования α и β (для этого надо решить относительно переменной t уравнения φ (t ) = a и φ (t ) = b ).

Вместо подстановки x = φ (t ) можно использовать подстановку t = g (x ) . В этом случае нахождение новых пределов интегрирования по переменной t упрощается: α = g (a ) , β = g (b ) .

Пример 2 . Вычислить интеграл

Решение. Введем новую переменную по формуле . Возведя в квадрат обе части равенства , получим 1 + x = t 2 , откуда x = t 2 - 1, dx = (t 2 - 1)"dt = 2tdt . Находим новые пределы интегрирования. Для этого в формулу подставим старые пределы x = 3 и x = 8. Получим: , откуда t = 2 и α = 2; , откуда t = 3 и β = 3. Итак,

Пример 3. Вычислить

Решение. Пусть u = ln x , тогда , v = x . По формуле (4)

Первообразная функция и неопределённый интеграл

Факт 1. Интегрирование - действие, обратное дифференцированию, а именно, восстановление функции по известной производной этой функции. Восстановленная таким образом функция F (x ) называется первообразной для функции f (x ).

Определение 1. Функция F (x f (x ) на некотором промежутке X , если для всех значений x из этого промежутка выполняется равенство F "(x )=f (x ), то есть данная функция f (x ) является производной от первообразной функции F (x ). .

Например, функция F (x ) = sin x является первообразной для функции f (x ) = cos x на всей числовой прямой, так как при любом значении икса (sin x )" = (cos x ) .

Определение 2. Неопределённым интегралом функции f (x ) называется совокупность всех её первообразных . При этом употребляется запись

f (x )dx

,

где знак называется знаком интеграла, функция f (x ) – подынтегральной функцией, а f (x )dx – подынтегральным выражением.

Таким образом, если F (x ) – какая-нибудь первообразная для f (x ) , то

f (x )dx = F (x ) +C

где C - произвольная постоянная (константа).

Для понимания смысла множества первообразных функции как неопределённого интеграла уместна следующая аналогия. Пусть есть дверь (традиционная деревянная дверь). Её функция - "быть дверью". А из чего сделана дверь? Из дерева. Значит, множеством первообразных подынтегральной функции "быть дверью", то есть её неопределённым интегралом, является функция "быть деревом + С", где С - константа, которая в данном контексте может обозначать, например, породу дерева. Подобно тому, как дверь сделана из дерева при помощи некоторых инструментов, производная функции "сделана" из первообразной функции при помощи формулы, которую мы узнали, изучая производную .

Тогда таблица функций распространённых предметов и соответствующих им первообразных ("быть дверью" - "быть деревом", "быть ложкой" - "быть металлом" и др.) аналогична таблице основных неопределённых интегралов, которая будет приведена чуть ниже. В таблице неопределённых интегралов перечисляются распространённые функции с указанием первообразных, из которых "сделаны" эти функции. В части задач на нахождение неопределённого интеграла даны такие подынтегральные функции, которые без особых услилий могут быть проинтегрированы непосредственно, то есть по таблице неопределённых интегралов. В задачах посложнее подынтегральную функцию нужно предварительно преобразовать так, чтобы можно было использовать табличные интегралы.

Факт 2. Восстанавливая функцию как первообразную, мы должны учитывать произвольную постоянную (константу) C , а чтобы не писать список первообразной с различными константами от 1 до бесконечности, нужно записывать множество первообразных с произвольной константой C , например, так: 5x ³+С . Итак, произвольная постоянная (константа) входит в выражение первообразной, поскольку первообразная может быть функцией, например, 5x ³+4 или 5x ³+3 и при дифференцировании 4 или 3, или любая другая константа обращаются в нуль.

Поставим задачу интегрирования: для данной функции f (x ) найти такую функцию F (x ), производная которой равна f (x ).

Пример 1. Найти множество первообразных функции

Решение. Для данной функции первообразной является функция

Функция F (x ) называется первообразной для функции f (x ), если производная F (x ) равна f (x ), или, что одно и то же, дифференциал F (x ) равен f (x ) dx , т.е.

(2)

Следовательно, функция - первообразная для функции . Однако она не является единственной первообразной для . Ими служат также функции

где С – произвольная постоянная. В этом можно убедиться дифференцированием.

Таким образом, если для функции существует одна первообразная, то для неё существует бесконечное множество первообразных, отличающихся на постоянное слагаемое. Все первообразные для функции записываются в приведённом выше виде. Это вытекает из следующей теоремы.

Теорема (формальное изложение факта 2). Если F (x ) – первообразная для функции f (x ) на некотором промежутке Х , то любая другая первообразная для f (x ) на том же промежутке может быть представлена в виде F (x ) + C , где С – произвольная постоянная.

В следующем примере уже обращаемся к таблице интегралов, которая будет дана в параграфе 3, после свойств неопределённого интеграла. Делаем это до ознакомления со всей таблицей, чтобы была понятна суть вышеизложенного. А после таблицы и свойств будем пользоваться ими при интегрировании во всей полносте.

Пример 2. Найти множества первообразных функций:

Решение. Находим множества первообразных функций, из которых "сделаны" данные функции. При упоминании формул из таблицы интегралов пока просто примите, что там есть такие формулы, а полностью саму таблицу неопределённых интегралов мы изучим чуть дальше.

1) Применяя формулу (7) из таблицы интегралов при n = 3, получим

2) Используя формулу (10) из таблицы интегралов при n = 1/3, имеем

3) Так как

то по формуле (7) при n = -1/4 найдём

Под знаком интеграла пишут не саму функцию f , а её произведение на дифференциал dx . Это делается прежде всего для того, чтобы указать, по какой переменной ищется первообразная. Например,

, ;

здесь в обоих случаях подынтегральная функция равна , но её неопределённые интегралы в рассмотренных случаях оказываются различными. В первом случае эта функция рассматривается как функция от переменной x , а во втором - как функция от z .

Процесс нахождения неопределённого интеграла функции называется интегрированием этой функции.

Геометрический смысл неопределённого интеграла

Пусть требуется найти кривую y=F(x) и мы уже знаем,что тангенс угла наклона касательной в каждой её точке есть заданная функция f(x) абсциссы этой точки.

Согласно геометрическому смыслу производной, тангенс угла наклона касательной в данной точке кривой y=F(x) равен значению производной F"(x) . Значит, нужно найти такую функцию F(x) , для которой F"(x)=f(x) . Требуемая в задаче функция F(x) является первообразной от f(x) . Условию задачи удовлетворяет не одна кривая, а семейство кривых. y=F(x) - одна из таких кривых, а всякая другая кривая может быть получена из неё параллельным переносом вдоль оси Oy .

Назовём график первообразной функции от f(x) интегральной кривой. Если F"(x)=f(x) , то график функции y=F(x) есть интегральная кривая.

Факт 3. Неопределённый интеграл геометрически представлен семеством всех интегральных кривых , как на рисунке ниже. Удалённость каждой кривой от начала координат определяется произвольной постоянной (константой) интегрирования C .

Свойства неопределённого интеграла

Факт 4. Теорема 1. Производная неопределённого интеграла равна подынтегральной функции, а его дифференциал – подынтегральному выражению.

Факт 5. Теорема 2. Неопределённый интеграл от дифференциала функции f (x ) равен функции f (x ) с точностью до постоянного слагаемого , т.е.

(3)

Теоремы 1 и 2 показывают, что дифференцирование и интегрирование являются взаимно-обратными операциями.

Факт 6. Теорема 3. Постоянный множитель в подынтегральном выражении можно выносить за знак неопределённого интеграла , т.е.

Решение интегралов – задача легкая, но только для избранных. Эта статья для тех, кто хочет научиться понимать интегралы, но не знает о них ничего или почти ничего. Интеграл... Зачем он нужен? Как его вычислять? Что такое определенный и неопределенный интегралы?

Если единственное известное вам применение интеграла – доставать крючком в форме значка интеграла что-то полезное из труднодоступных мест, тогда добро пожаловать! Узнайте, как решать простейшие и другие интегралы и почему без этого никак нельзя обойтись в математике.

Изучаем понятие « интеграл»

Интегрирование было известно еще в Древнем Египте. Конечно, не в современном виде, но все же. С тех пор математики написали очень много книг по этой теме. Особенно отличились Ньютон и Лейбниц , но суть вещей не изменилась.

Как понять интегралы с нуля? Никак! Для понимания этой темы все равно понадобятся базовые знания основ математического анализа. Сведения о , необходимые и для понимания интегралов, уже есть у нас в блоге.

Неопределенный интеграл

Пусть у нас есть какая-то функция f(x) .

Неопределенным интегралом функции f(x) называется такая функция F(x) , производная которой равна функции f(x) .

Другими словами интеграл – это производная наоборот или первообразная. Кстати, о том, как читайте в нашей статье.


Первообразная существует для всех непрерывных функций. Также к первообразной часто прибавляют знак константы, так как производные функций, различающихся на константу, совпадают. Процесс нахождения интеграла называется интегрированием.

Простой пример:

Чтобы постоянно не высчитывать первообразные элементарных функций, их удобно свести в таблицу и пользоваться уже готовыми значениями.

Полная таблица интегралов для студентов


Определенный интеграл

Имея дело с понятием интеграла, мы имеем дело с бесконечно малыми величинами. Интеграл поможет вычислить площадь фигуры, массу неоднородного тела, пройденный при неравномерном движении путь и многое другое. Следует помнить, что интеграл – это сумма бесконечно большого количества бесконечно малых слагаемых.

В качестве примера представим себе график какой-нибудь функции.


Как найти площадь фигуры, ограниченной графиком функции? С помощью интеграла! Разобьем криволинейную трапецию, ограниченную осями координат и графиком функции, на бесконечно малые отрезки. Таким образом фигура окажется разделена на тонкие столбики. Сумма площадей столбиков и будет составлять площадь трапеции. Но помните, что такое вычисление даст примерный результат. Однако чем меньше и уже будут отрезки, тем точнее будет вычисление. Если мы уменьшим их до такой степени, что длина будет стремиться к нулю, то сумма площадей отрезков будет стремиться к площади фигуры. Это и есть определенный интеграл, который записывается так:


Точки а и b называются пределами интегрирования.


« Интеграл»

Кстати! Для наших читателей сейчас действует скидка 10% на

Правила вычисления интегралов для чайников

Свойства неопределенного интеграла

Как решить неопределенный интеграл? Здесь мы рассмотрим свойства неопределенного интеграла, которые пригодятся при решении примеров.

  • Производная от интеграла равна подынтегральной функции:

  • Константу можно выносить из-под знака интеграла:

  • Интеграл от суммы равен сумме интегралов. Верно также для разности:

Свойства определенного интеграла

  • Линейность:

  • Знак интеграла изменяется, если поменять местами пределы интегрирования:

  • При любых точках a , b и с :

Мы уже выяснили, что определенный интеграл – это предел суммы. Но как получить конкретное значение при решении примера? Для этого существует формула Ньютона-Лейбница:

Примеры решения интегралов

Ниже рассмотрим неопределенный интеграл и примеры с решением. Предлагаем самостоятельно разобраться в тонкостях решения, а если что-то непонятно, задавайте вопросы в комментариях.


Для закрепления материала посмотрите видео о том, как решаются интегралы на практике. Не отчаиваетесь, если интеграл не дается сразу. Обратитесь в профессиональный сервис для студентов, и любой тройной или криволинейный интеграл по замкнутой поверхности станет вам по силам.

Данная статья подробно рассказывает об основных свойствах определенного интеграла. Они доказываются при помощи понятия интеграла Римана и Дарбу. Вычисление определенного интеграла проходит, благодаря 5 свойствам. Оставшиеся из них применяются для оценивания различных выражений.

Перед переходом к основным свойствам определенного интеграла, необходимо удостовериться в том, что a не превосходит b .

Основные свойства определенного интеграла

Определение 1

Функция y = f (x) , определенная при х = а, аналогично справедливому равенству ∫ a a f (x) d x = 0 .

Доказательство 1

Отсюда видим, что значением интеграла с совпадающими пределами равняется нулю. Это следствие интеграла Римана, потому как каждая интегральная сумма σ для любого разбиения на промежутке [ a ; a ] и любого выбора точек ζ i равняется нулю, потому как x i - x i - 1 = 0 , i = 1 , 2 , . . . , n , значит, получаем, что предел интегральных функций – ноль.

Определение 2

Для функции, интегрируемой на отрезке [ a ; b ] , выполняется условие ∫ a b f (x) d x = - ∫ b a f (x) d x .

Доказательство 2

Иначе говоря, если сменить верхний и нижний предел интегрирования местами, то значение интеграла поменяет значение на противоположное. Данное свойство взято из интеграла Римана. Однако, нумерация разбиения отрезка идет с точки х = b .

Определение 3

∫ a b f x ± g (x) d x = ∫ a b f (x) d x ± ∫ a b g (x) d x применяется для интегрируемых функций типа y = f (x) и y = g (x) , определенных на отрезке [ a ; b ] .

Доказательство 3

Записать интегральную сумму функции y = f (x) ± g (x) для разбиения на отрезки с данным выбором точек ζ i: σ = ∑ i = 1 n f ζ i ± g ζ i · x i - x i - 1 = = ∑ i = 1 n f (ζ i) · x i - x i - 1 ± ∑ i = 1 n g ζ i · x i - x i - 1 = σ f ± σ g

где σ f и σ g являются интегральными суммами функций y = f (x) и y = g (x) для разбиения отрезка. После перехода к пределу при λ = m a x i = 1 , 2 , . . . , n (x i - x i - 1) → 0 получаем, что lim λ → 0 σ = lim λ → 0 σ f ± σ g = lim λ → 0 σ g ± lim λ → 0 σ g .

Из определения Римана это выражение является равносильным.

Определение 4

Вынесение постоянного множителя за знак определенного интеграла. Интегрируемая функция из интервала [ a ; b ] с произвольным значением k имеет справедливое неравенство вида ∫ a b k · f (x) d x = k · ∫ a b f (x) d x .

Доказательство 4

Доказательство свойства определенного интеграла аналогично предыдущему:

σ = ∑ i = 1 n k · f ζ i · (x i - x i - 1) = = k · ∑ i = 1 n f ζ i · (x i - x i - 1) = k · σ f ⇒ lim λ → 0 σ = lim λ → 0 (k · σ f) = k · lim λ → 0 σ f ⇒ ∫ a b k · f (x) d x = k · ∫ a b f (x) d x

Определение 5

Если функция вида y = f (x) интегрируема на интервале x с a ∈ x , b ∈ x , получаем, что ∫ a b f (x) d x = ∫ a c f (x) d x + ∫ c b f (x) d x .

Доказательство 5

Свойство считается справедливым для c ∈ a ; b , для c ≤ a и c ≥ b . Доказательство проводится аналогично предыдущим свойствам.

Определение 6

Когда функция имеет возможность быть интегрируемой из отрезка [ a ; b ] , тогда это выполнимо для любого внутреннего отрезка c ; d ∈ a ; b .

Доказательство 6

Доказательство основывается на свойстве Дарбу: если у имеющегося разбиения отрезка произвести добавление точек, тогда нижняя сумма Дарбу не будет уменьшаться, а верхняя не будет увеличиваться.

Определение 7

Когда функция интегрируема на [ a ; b ] из f (x) ≥ 0 f (x) ≤ 0 при любом значении x ∈ a ; b , тогда получаем, что ∫ a b f (x) d x ≥ 0 ∫ a b f (x) ≤ 0 .

Свойство может быть доказано при помощи определения интеграла Римана: любая интегральная сумма для любого выбора точек разбиения отрезка и точек ζ i с условием, что f (x) ≥ 0 f (x) ≤ 0 , получаем неотрицательной.

Доказательство 7

Если функции y = f (x) и y = g (x) интегрируемы на отрезке [ a ; b ] , тогда следующие неравенства считаются справедливыми:

∫ a b f (x) d x ≤ ∫ a b g (x) d x , е с л и f (x) ≤ g (x) ∀ x ∈ a ; b ∫ a b f (x) d x ≥ ∫ a b g (x) d x , е с л и f (x) ≥ g (x) ∀ x ∈ a ; b

Благодаря утверждению знаем, что интегрирование допустимо. Данное следствие будет использовано в доказательстве других свойств.

Определение 8

При интегрируемой функции y = f (x) из отрезка [ a ; b ] имеем справедливое неравенство вида ∫ a b f (x) d x ≤ ∫ a b f (x) d x .

Доказательство 8

Имеем, что - f (x) ≤ f (x) ≤ f (x) . Из предыдущего свойства получили, что неравенство может быть интегрировано почленно и ему соответствует неравенство вида - ∫ a b f (x) d x ≤ ∫ a b f (x) d x ≤ ∫ a b f (x) d x . Данное двойное неравенство может быть записано в другой форме: ∫ a b f (x) d x ≤ ∫ a b f (x) d x .

Определение 9

Когда функции y = f (x) и y = g (x) интегрируются из отрезка [ a ; b ] при g (x) ≥ 0 при любом x ∈ a ; b , получаем неравенство вида m · ∫ a b g (x) d x ≤ ∫ a b f (x) · g (x) d x ≤ M · ∫ a b g (x) d x , где m = m i n x ∈ a ; b f (x) и M = m a x x ∈ a ; b f (x) .

Доказательство 9

Аналогичным образом производится доказательство. M и m считаются наибольшим и наименьшим значением функции y = f (x) , определенной из отрезка [ a ; b ] , тогда m ≤ f (x) ≤ M . Необходимо умножить двойное неравенство на функцию y = g (x) , что даст значение двойного неравенства вида m · g (x) ≤ f (x) · g (x) ≤ M · g (x) . Необходимо проинтегрировать его на отрезке [ a ; b ] , тогда получим доказываемое утверждение.

Следствие: При g (x) = 1 неравенство принимает вид m · b - a ≤ ∫ a b f (x) d x ≤ M · (b - a) .

Первая формула среднего значения

Определение 10

При y = f (x) интегрируемая на отрезке [ a ; b ] с m = m i n x ∈ a ; b f (x) и M = m a x x ∈ a ; b f (x) имеется число μ ∈ m ; M , которое подходит ∫ a b f (x) d x = μ · b - a .

Следствие: Когда функция y = f (x) непрерывная из отрезка [ a ; b ] , то имеется такое число c ∈ a ; b , которое удовлетворяет равенству ∫ a b f (x) d x = f (c) · b - a .

Первая формула среднего значения в обобщенной форме

Определение 11

Когда функции y = f (x) и y = g (x) являются интегрируемыми из отрезка [ a ; b ] с m = m i n x ∈ a ; b f (x) и M = m a x x ∈ a ; b f (x) , а g (x) > 0 при любом значении x ∈ a ; b . Отсюда имеем, что есть число μ ∈ m ; M , которое удовлетворяет равенству ∫ a b f (x) · g (x) d x = μ · ∫ a b g (x) d x .

Вторая формула среднего значения

Определение 12

Когда функция y = f (x) является интегрируемой из отрезка [ a ; b ] , а y = g (x) является монотонной, тогда имеется число, которое c ∈ a ; b , где получаем справедливое равенство вида ∫ a b f (x) · g (x) d x = g (a) · ∫ a c f (x) d x + g (b) · ∫ c b f (x) d x

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter