Мой генотип и мои личные заслуги проект. Генотип как единая целостная система. Взаимодействие генов. Влияние наследственности на интеллект

Для проведения исследовательской работы на странице можно подобрать актуальные темы проектов по генетике для учеников 9, 10 и 11 класса общеобразовательной школы. Данные исследовательские проекты необходимо выполнять под руководством учителя биологии - руководителя проекта.


Представленные темы проектов по генетике не являются окончательными и могут быть видоизменены при согласовании с руководителем проекта. Главное, чтобы выбранная тема для проекта была интересна и соответствовала уровню знаний автора.

Изложенные ниже темы исследовательских работ по генетике также подойдут для самостоятельного изучения учащимися 9, 10 и 11 классов генетики и подготовки к факультативным занятиям по данному предмету.

В предложенных темах исследовательских проектных работ по генетике поднимаются такие вопросы, как история и теория науки генетики, генетические особенности развития, генетический фонд нации, наследственные заболевания, єволюция человека и др.

Также в темах проектов по генетике предусматривается использование в исследовательской работе учащегося следующих понятий: геном, ген, генотип, генетика, клонирование, мутации, геномика и т.д. Школьник должен иметь углубленные знания по биологии.

Темы проектов дают возможность рассматривать школьникам такие понятия, как мигрирующий геном, нанотехнологии, искусственные органы, а также исследовать природу старения. Важно очень внимательно подойти к выбору темы проектной работы в области генетики, необходим будет совет преподавателя.

Темы проектов по генетике

Темы исследовательских работ для учащихся по генетике:


Анализ генома человека на разных уровнях его организации.
Будут ли расшифрованы генетические основы разума?
Влияние генов на предрасположенность к артериальной гипертонии.
Вредные и полезные мутации
Выявление причин отрицательно влияющих на генотип человека.
Г. Мендель и его вклад в развитие генетики.
Генетика и человек.
Генетика: современный подход.
Генетические особенности индивидуального развития.
Генетический фонд нации
Генотипическая обусловленность интеллекта и составляющих психофизиологических параметров.
Генотип-средовое соотношение в формировании некоторых признаков человека.
Изучение признака наследования в моей семье используя генеалогический метод.
Искусственные органы - проблема и перспективы.
Исследование проблем морфологического строения учеников школы.
Классические генетические эксперименты.
Клонирование животных. Проблемы и перспективы.
Методы генетических исследований человека.
Мигрирующий геном - что это такое?
Мир нанотехнологий - возможности применения в биологии и медицине.
Мукополисахаридозы.
Мутагены, канцерогены, аллергены, антимутагены.
Наследование признака дальтонизма в генотипе человека?
Наследственные болезни.
Наследственные заболевания. Классификация.
Научные и этические проблемы клонирования.
Окружающая среда, факторы биотической и абиотической природы, влияющие на генотип человека.
Откуда мы? (к проблеме возникновения жизни)
Последствия влияния факторов окружающей среды на генотип человека.
Почему мы не похожи друг на друга? (иммунологические аспекты)
Протеомика, геномика, метаболомика - новые направления в биологии.
Русская школа генетики.
Современные взгляды на природу старения.
Создание и разработка новых сортов растений.
Сравнительный анализ состояния окружающей среды и частоты рождения детей с врожденной и наследственно обусловленной патологией.
Становление и развитие генетики.
Человек и окружающая среда - итоги эволюции человеческого общества на сегодняшний день.
Эволюция человека - возможные результаты.

Класс: 10

Цель: Закрепить и обобщить знания учащихся по разделу “ Основы генетики и селекции”, теме “Генотип как целостная система”.

1. Образовательные:

– обобщить и закрепить знания учащихся
об основных генетических законах,
об материальных основах наследственности – генах и хромосомах,
об цитологических основах генетических законов и гипотезы чистоты гамет,
углубить знания о генотипе как целостной, исторически сложившейся системе,
раскрыть проявление взаимосвязи и взаимодействия генов друг с другом, влияющих на проявление различных признаков.

2. Развивающие:

– способствовать развитию учебных и общеобразовательных навыков:
наблюдения, сравнения и обобщения, формулирование доказательств и выводов;
развитию умения находить ошибки и объяснять их;
умению логически мыслить;
отрабатывать навыки коллективной работы.

3. Воспитательные:

– содействовать формированию материалистического представления учащихся о научной картине мира,
показать важность научных открытий в жизни общества и развитии науки биологии, её отраслей, важность применения этих знаний в различных сферах жизни,
содействовать эстетическому развитию учащихся через использование наглядных материалов урока, применения театрализации.

Оборудование: образовательный комплекс Биология. 10 класс, модель цепи ДНК, коллекция сортов томатов, динамическая модель “Сцепленное наследование у мух дрозофил”, таблица “Наследование доминантных и рецессивных признаков у различных организмов”, рисунки учащихся.

Педагогические технологии, приёмы и методы, применяемые на уроке: “Лови ошибку”, “Да-нетка” (ТРИЗ), практичность знаний, театрализация, групповая работа (КСО), фронтальная работа.

Ход урока

А. Начало урока.

1. Знакомство с задачами урока.

Учитель: Сегодня на уроке:

  • Мы восхитимся глубокими знаниями генетики, покажем знания генетических законов.
  • Покажем умения решать генетические задачи.

2. Биологическая загадка. “Ношу их много лет, а счёту им не знаю ” (Отгадка с генетической точки зрения - гены.)

3. Логическое задание. Логически связываем предметы на учительском столе. Что их объединяет?

  • Модель цепи ДНК.
  • Томаты разной формы и окраски.

4. Фронтальная работа. Характеристика гена.

  • Ген - это участок цепи ДНК определяющий признак.
  • Гены бывают доминантными А и рецессивными а.
  • Аллельные АА, Аа и неаллельные АБ, аб.
  • Гены передаются по наследству, а так же могут изменяться.

Б. Проверка знаний и применение их в новой ситуации

Игра

Да – нетка”

Задумано генетическое явление, отражающееся в пословице “ Женитьба не напасть, как бы женившись не пропасть” Анализ народной мудрости в пословице, переход к генетике.

Учащиеся задают вопросы учителю, который отвечает только да или нет.

Учащиеся:

  1. Это явление характерно для всех царств живой природы? Да.
  2. Проявляется только в гомозиготном состоянии? Нет.
  3. Проявляется в гетерозиготном организме по определённому признаку? Да.
  4. Это явление доминирования? Да

Демонстрация на магнитной доске.

1. Скрещивание мух дрозофил с серым и черным телом. Гибридычерные.

Вопрос классу: Что вы наблюдаете?

Ответ учащихся: Явление доминирования. Правило единообразия. Гибрид F1.

2. Скрещивание двух особей с разным фенотипом. В гибридах расщепление не наблюдается.

Вопрос классу: Какое скрещивание показано?

Ответ учащихся: Анализирующее скрещивание для определения генотипа одного из родительских особей.

Фронтальная беседа

Вопрос классу: Какие еще законы генетики вам известны?

Ответ учащихся: Первый закон Менделя, закон расщепления. Второй закон Менделя, независимое распределение генов. (Раскрывают их сущность).

Парная работа “Лови ошибку”

(Допущены ошибки в условиях задачи, находят ошибки, работая в паре) Отвечают

Театрализация “Генетическая консультация”

Учитель: А теперь, я думаю, мы готовы для открытия Генетической консультации. (Групповая работа)

Распределены учащихся на 4 группы:

1 группаотдел Генетика человека
2 группаотдел Генетика животных
3 группаотдел Генетика растений
4 группаПрактиканты (ребята работают по решению задач репродуктивного уровня с использованием учебника, по желанию).

Входит первая посетительницаученица 10-го класса.

“Здравствуйте, у меня есть сынок Прошенька. Красавец писаный: голубоглазый, светловолосый, кудрявый, высокий. Вот его портрет, (показывает нарисованный портрет) У нас в семье испокон веков все кудрявые, да высокие. Прошенька, конечно, при такой наружности в артисты пошел. Сейчас его пригласили сниматься в Голливуд. Задумал Прошенька жениться, да никак не может выбрать из трех невествсе хороши, и характером, и внешностью. Он фотографии цветные прислал. Девушкииностранки, но лишь бы любили моего сына, да родили мне внуков, хоть малость на Прошу похожих, (показывает портрет) Японка Ликареглазая, с черными, прямыми волосами, невысокого роста Немка Моникаголубоглазая, со светлыми, прямыми волосами, маленькая Англичанка Мэризеленоглазая, темноволосая, кудрявая, высокая.

“Консультанты”, решая задачи, определяют какова вероятность рождения ребенка с признаками Проши в каждом из возможных браков. Пользуются таблицей “Доминантные и рецессивные признаки у человека”.

А- карие глаза В темноволосы Днезначительный рост
А / зеленые глаза в светлые волосы dвысокий рост
а- голубые глаза С кудрявые волосы
с прямые волосы

Три человека в группе, каждый делает свой расчет, затем обсуждается и анализируется результат.

Вывод: Проша может жениться на Монике, чтобы по трем признакам ребенок был похож на него. Есть шанс и у Мэри. 50% вероятности.

Вторая группа – Генетика животных

К ним обращается работник таможни (ученик 10 класса)

“Я служащий таможни маленького государства Лисляндии. Вот уже несколько столетий мы разводим лис. Мех идет на экспорт, а деньги от его продажи, составляют основу экономики страны. Особенно ценятся у нас серебристые лисы. Они считаются национальным достоянием, и провозить их через границу строго запрещено законом страны.Я задержал контробандиста, он перевозил через границу двух лис разного пола, рыжей окраски и утверждает, что не нарушает законов Лисляндии, поэтому мне нужна генетическая консультация.

Ответ: в результате получится 1/3 часть лис с серой окраской. Вывод: У контрабандиста необходимо изъять лис рыжей окраски, потому что они гетерозиготны по признаку окраски и могут давать расщепление 3: 1 по первому закону Менделя.

Третий посетитель говорит о том, что он выписал цветы “львиный зев” с разной окраской венчика. Получив посылку, прочиталF1розового цвета. Хотел, было уже писать возмущенное письмо в фирму, да решил обраться в генетическую консультацию.

Консультанты делают расчет. Генетика растений.

Ответ: Из фирмы “Среди цветов” прислали гибридные семена, гетерозиготные с неполным доминированием. После их посева, вы сможете получить цветки разной окраски.

Из каждой группы консультантов по одному ученику дают объяснения у доски. Посетители благодарят консультантов.


Виталий Кушниров

Начнем с простых истин. В природе существование биологических видов сопровождается естественным отбором, то есть гибелью генетически не вполне совершенных индивидуумов. Это позволяет видам совершенствоваться и эволюционировать. Заметим, что без отбора не было бы не только совершенствования, но и самой жизни, ни в каких ее формах. И для того, чтобы мы, такие красивые и умные, могли сидеть сейчас перед компьютером, размышляя о всякой всячине, погибли миллиарды, нет, мириады ближайших родственников наших предков.

Но отбор необходим и просто для поддержания имеющегося уровня генетических качеств. Неточное копирование генетической информации является фундаментальным законом природы, а большинство изменений, возникающих при копировании, неблагоприятны. Отсеять их можно только отбором.

Человек, несомненно, оказался весьма удачным творением природы, намного превзошедшим прочих обитателей биосферы по своим возможностям. Это позволило ему отменить естественный отбор, вследствие чего генетическая эволюция человека практически прекратилась. Развитие человека сосредоточилось в иных областях, в культуре и технологиях. Но генетическая основа человека в отсутствие отбора деградирует, и можно спорить лишь о том, насколько быстро это происходит и как скоро ее качество станет неприемлемо низким. Процесс уже зашел довольно далеко. К настоящему времени большинство людей имеет большие или малые, скрытые или явные генетические дефекты. Полностью здоровых людей очень мало. Например, как говорит статистика, их мало среди армейских призывников, то есть юношей в возрасте их физического расцвета.

Заметим, что часто отбор не просто отсутствует, а он негативен, то есть лучшие люди погибают первыми. В средневековой Европе красивых женщин считали ведьмами и жгли на костре. А ведь красота – не абстрактная эстетическая категория. То, что мы воспринимаем, как красоту, есть набор признаков, говорящих о физическом (и генетическом) благополучии организма. В нашей стране в сталинское время отправляли в лагеря – и на смерть – тех, кто был умен, активен, смог чего-либо добиться. Кулаков, интеллигенцию, военачальников. В наше время наблюдается отрицательная корреляция между умом и плодовитостью: более способные делают карьеру и реже заводят детей. И таких примеров множество.

Надо сказать, что природа все же оставила нам некоторые механизмы генетического очищения. Мутации, нарушающие жизненно важные функции клеточного уровня, отсекаются на стадии половых клеток, которые имеют единичный генетический набор, и потому плохой ген не может быть компенсирован его хорошей копией. Многие мутации, нарушающие работу организма (а не отдельных клеток), отсекаются на эмбриональной стадии, когда младенец не может зачаться или дотянуть до рождения. Но это происходит лишь в крайних случаях – когда сумма генетических ошибок становится несовместимой с жизнью. Человек стал активно вмешиваться в отбор на этих этапах, и это не очень хорошо. Идет борьба за снижение младенческой смертности, и этот показатель давно уже стал критерием оценки качества работы здравоохранения. Развиваются технологии искусственного зачатия для тех, у кого оно не происходит естественным путем. Отношение к этим процедурам, по крайней мере, не должно быть однозначно позитивным. Следует понимать, что таким образом рождаются генетически более слабые дети. При этом почти никто не задумывается, что мы оказываем нашим потомкам медвежью услугу, передавая им нарастающий груз генетических дефектов.

Генетические перспективы человека

Таким образом, очевидно, что генофонд человечества заметно ослаблен и продолжает деградировать. Поскольку вредные мутации возникают в сотни раз чаще, чем полезные, деградация должна идти намного быстрее эволюционного совершенствования. То, что шлифовалось миллион лет, можно растратить за несколько тысяч, или еще быстрее.

Где же выход? Опишу два. То, что можно сделать на нынешнем уровне медицины, и что – в близком будущем.

Решения, доступные сейчас . Родители с ослабленной генетикой, с серьезными наследуемыми заболеваниями должны отказаться от рождения собственных детей. Если болен отец – пусть его дело сделает проверенный здоровый донор. Если мать – процедура сложнее – искусственное оплодотворение с донорской яйцеклеткой.

В общем, рецепты просты, но ими мало кто пользуется. Вероятно, потому, что в обществе отсутствует понимание важности вопроса и доминируют стереотипы значимости генетического родства. Большинство родителей считают, что лучше плохое, но свое. Некоторые другие проблемы на этом пути, опять же, связаны со стереотипами. Например, донор, мать или отец, могут начать претендовать на своего биологического потомка. А ведь их вклад – всего лишь половая клетка, которая при ином раскладе была бы не востребована и погибла. (Напомню, в человеке триллионы клеток). В целом же, пока еще даже рано говорить о возможных проблемах – было бы хорошо, если бы общество хотя бы задумалось и осознало необходимость каких-то действий по улучшению генетики.

Будущее. А вот в будущем, причем довольно близком, нас ожидают весьма интересные возможности. (Во многом ради них и была написана статья). Я бы сказал – произойдет две революции. Первая – мы прочтем всё, что записано в наших хромосомах, и научимся это понимать. Вторая – воспользуемся этим, чтобы исправить все найденные ошибки.

Первая из революций достаточно уверенно просматривается, как следствие развития технологий чтения хромосомной ДНК (секвенирования ). Развития, которое вполне можно назвать революционным по его скорости, по новизне и изяществу возникающих технических решений.

Чтобы не перегружать текст, я выделил описание развития методов секвенирования в . Возможно, не все осилят технические детали, а для кого-то, наоборот, эти детали уже известны. Но прочесть рекомендую, потому что это один из достойнейших эпизодов в творческой истории человечества, настоящий фейерверк изобретений.

Вкратце, та статья о следующем. До недавнего времени технологии секвенирования были относительно малопроизводительны, и более подходили для анализа отдельных генов, чем геномов . (Один ген содержит 1 – 5 тыс. нуклеотидов, геном человека, все содержимое его двойного набора хромосом – 2 х 3 миллиарда нукл.) Но в последнее десятилетие наметился радикальный прогресс. Были разработаны методы и приборы, позволяющие готовить одновременно и «в одной пробирке» миллионы образцов ДНК, а затем одновременно же их анализировать. Каждый такой образец – это локализованная колония одинаковых молекул ДНК. Нуклеотидные последовательности в этих приборах считываются с помощью фотокамеры, в виде миллионов флуоресцентных или люминесцентных мерцающих световых точек – сигналов, поступающих от колоний. Все это позволило повысить скорость секвенирования в тысячи, а то и в миллионы раз, и определять миллиарды нуклеотидов в день. И уже появляются приборы следующего поколения, способные читать единичные молекулы ДНК. Стоимость геномного секвенирования падает фантастически быстро, почти троекратно каждый год. Это позволяет рассчитывать, что в недалеком будущем, лет через 10, каждый сможет прочесть свой геном за вполне скромные деньги, за 1000 долларов или еще дешевле.

Осмысление генома

В результате такого развития секвенирования лет примерно через 20, или еще быстрее, будут определены миллионы человеческих геномов. Это позволит, посредством статистического анализа, определить, какие варианты генов (или их сочетания) отвечают за те или иные наши особенности, недостатки и склонность к разным болезням. Как говорят генетики, установить соответствие между генотипом и фенотипом (набором наблюдаемых признаков).

Геном человека содержит от 20 до 25 тысяч генов , кодирующих белки или функциональные РНК. У разных людей каждый ген может иметь десятки вариантов, называемых аллелями. Большинство из них вполне хороши, но некоторые, и таких тоже немало, содержат мутации, ухудшающие работу генного продукта, белка или РНК. Вариантные отличия могут относиться как к кодирующей области гена, так и к регуляторной промоторной области, определяющей, когда, где и в каком количестве должен синтезироваться продукт данного гена. Например, несвоевременное включение генов, определяющих развитие организма, может приводить к дефектам его строения, т.е. уродствам.

Несмотря на то, что молекулярные функции большей части генов известны, оценить «качество» гена теоретически, т.е. исходя из его последовательности, можно лишь приблизительно и в самых простых случаях, когда имеется явный дефект какой-либо функции организма, и виден дефект соответствующего гена. Трудность предсказаний связана, в частности, с тем, что многие гены определяют (или влияют на) более чем одну функцию, а многие признаки определяются более чем одним геном.

Поэтому эффективной альтернативой представляется эмпирический подход: статистика. Сопоставление большого количества геномов и соответствующих им фенотипических характеристик позволит достоверно определить, какие аллели являются «плохими», и какие недостатки определяют. Это знание позволит интерпретировать индивидуальные геномы, определять, какие плохие аллели (или их комбинации) есть у каждого в геноме. Это могут быть гены, определяющие склонность к болезням, тяжелым, как рак или диабет, или более легким. Можно ожидать и еще много интересного. Например, какие гены определяют агрессивность или мягкость характера, эгоизм и альтруизм, склонность к пьянству и многое другое.

Отмечу два технических обстоятельства. Первое, что наличие у нас двойного генетического набора позволяет замаскировать большинство бракованных аллелей, но эти аллели могут проявиться в следующих поколениях. Второе, что бо льшая часть человеческого генома (до 98%) ничего не кодирует , и, вероятно, не играет какой-либо роли. Сравнение геномов поможет прояснить этот вопрос, и, если роли нет, задача сравнения станет менее объемной.

Персональная медицина и другие последствия

Первое из существенных применений знания индивидуального генома – персональная медицина. Зная индивидуальные генетические слабости, будет возможно отодвигать появление наследственных болезней, или даже предотвращать их. Если предполагается высокая вероятность возникновения, например, диабета или болезни Альцгеймера, вам пропишут определенные лекарства и диету, при которых эта болезнь разовьется гораздо позже или не возникнет вовсе. Другие лекарства тоже будут назначать с учетом ваших генных особенностей и предрасположенностей. Знание генетических наклонностей поможет воспитывать детей и выбирать им профессию.

Кстати, многие дефектные варианты генов уже известны, а их выявление, производимое более простым способом, уже доступно и стоит недорого. В этом методе вариантные особенности генов (одно-нуклеотидные замены, SNP) выявляют посредством гибридизации ДНК человека со специально подобранными ДНК-праймерами. Такие праймеры, в количестве до миллиона наименований, закреплены на ДНК-чипе. Сигнал усиливают при помощи полимеразной цепной реакции (ПЦР ) с флуоресцентными праймерами, происходящей прямо на чипе, и затем фиксируют фотокамерой. Один из пионеров направления, компания 23andMe (Вики ), берет за такой анализ от 200 до 400 долларов. При этом выявляется предрасположенность к 100 тяжелым наследственным заболеваниям, таким, как Альцгеймер или диабет. В качестве бесплатного приложения – выявление родства , даже дальнего. Для тестирования не надо сдавать кровь, достаточно плюнуть в специальную пробирку. В 2008 году журнал Time назвал сервис ДНК-тестирования 23andMe «изобретением года». Компания полагает , что в перспективе она будет выполнять такой анализ на основе геномного секвенирования. Любопытно, что возглавляет компанию жена основателя Google Сергея Брина. (Он – король двоичного кода, она – четверичного).

Вероятно, поначалу наличие генетической информации может вызывать различные моральные проблемы в обществе, если она станет публичной. И это естественно – ведь по сути это более интимная информация, чем, скажем, фотография «ню». Знание ваших генетических недостатков, генетической склонности к болезням, к агрессии или эгоизму может затруднить устройство на работу или получение страховки. Обладателей геномов с асоциальными наклонностями, возможно, станут избегать. А может, наоборот, наличие генов агрессии станет смягчающим обстоятельством в суде? По логике нынешнего судопроизводства это вполне возможно. Окажется, что Чикатило не виноват, просто у него гены такие. Но я все же думаю, что все подобные проблемы решаемы.

Кстати, деятельность 23andMe разрешена законом лишь в половине штатов США, поскольку компания отправляет результаты тестирования пациенту, а не доктору, как принято.

Рафинирование генома

И вот мы знаем, какие из наших генов плохи. Что делать дальше? Здесь возможны решения различного уровня сложности. Самое простое – проверять геном человеческих эмбрионов на ранних стадиях развития, и прерывать беременность в случае плохого прогноза (но какой прогноз считать достаточно плохим?). Морально более приемлемым способом было бы проведение всех манипуляций до внедрения эмбриона в матку. Такой подход во многом напоминал бы современную технологию экстракорпорального оплодотворения (ЭКО). Описанные методы способны предотвратить самое тяжелое – рождение детей с явными физическими недостатками. И это уже большое достижение.

Но предположим, мы хотим избавиться от плохих генов – раз и навсегда. Чтобы наши потомки были здоровыми, красивыми и умными. Удивительно, но не все признают важность этой задачи. Мне приходилось встречать и такие мнения: Если мелкий дефект – не беда. Уже придумали или придумают от этого какую-нибудь таблетку. Даже если более серьезные дефекты – не проблема. Многие гении родились с дефектами. Эйнштейн и Ньютон были аутистами, Гете родился недоношенным и больным. А Стивен Хокинг и вовсе большинство своих трудов написал в инвалидной коляске. Так что пусть все будет, как есть.

Максим Каммерер - человек будущего. Улучшенная генетика налицо. (Обитаемый остров, братья Стругацкие, фильм - Ф. Бондарчук)

По-моему, это благодушие и благоглупость. Мне ближе позиция неполиткорректного Джеймса Уотсона: «Некоторые говорят, что если мы сделаем всех девушек красавицами, это будет ужасно. Я думаю, это было бы великолепно». Полагаю, что улучшение генетики человека – цель исключительно важная и благородная. В результате, мы будем редко бывать у доктора и долго жить, у нас всегда будет хорошее самочувствие, настроение и высокая работоспособность. Мне кажется даже, что генетическая предпосылка таланта, вплоть до гениальности, проста: отсутствие генетических отягощений, особенно связанных с работой мозга. Чтобы мысли летали, а не ползали. Остальное – детали воспитания и образования.

Помимо улучшения здоровья, есть и другая важная сторона. Скорее всего, через гены можно будет определять и характер будущего человека. Будет ли он добрым или агрессивным, эгоистом или альтруистом. Из добрых альтруистов можно создать идеальное общество, в котором будет мало внутренних противоречий и борьбы, которое будет справедливо, эффективно и комфортно для жизни. То есть, можно создать не только здорового человека, но и здоровое общество.

Чтобы этого добиться, необходимо заменить некачественные гены на их хорошие варианты. А плохих генов у каждого найдутся десятки, если не сотни (в зависимости от строгости подхода). Изменение генов у человека возможно уже сейчас, но технология весьма далека от совершенства и для нашей задачи потребуются ее принципиальные улучшения.

Во-первых, есть проблемы с адресностью доставки. Сейчас в большинстве случаев просто забрасывают в клетку хороший ген, безадресно. А нам надо попасть в нужное место хромосомы и заместить там «плохой» ген. Порядок генов в хромосоме должен быть сохранен, поскольку иначе гены будут теряться в следующих поколениях в результате кроссинговера (+англ .). (Это процесс, предшествующий образованию половых клеток, при котором родительские хромосомы обмениваются гомологичными участками, т.е. одинаково расположенными и несущими сходные гены. Так природа тасует генетические «карты» перед каждой «игрой» – новой жизнью.)

Направить ген в нужное место хромосомы принципиально возможно. Например, для клеток простейших эукариот, дрожжей, такая задача давно решена, и сейчас с ней справится любой студент. При этом большую часть работы выполняет дрожжевая система рекомбинации ДНК. На практике, вы вводите в клетку фрагмент ДНК, концевые участки которой идентичны какому-то месту на хромосоме, а середина может отличаться. ДНК сама находит комплементарное место на хромосоме, а клеточные механизмы вставляют ее вместо похожей старой. Но в клетках человека такой механизм работает плохо, ДНК попадает преимущественно в случайные места. В частности, потому, что его геном в 500 раз больше. Чтобы обеспечить адресность такого механизма в клетках животных, ему в помощь используют специально разработанные ферменты, нуклеазы, способные распознать любую произвольно заданную последовательность ДНК (1 , 2 ).

В целом, процедура замены одного гена пока довольно сложна и трудоемка, а случаи замены многих генов мне неизвестны. Для практического использования процедуру замены придется существенно усовершенствовать и упростить. Впрочем, этому не видно принципиальных препятствий, и разработка такой технологии едва ли займет более 50 лет.

Но, вероятно, главной проблемой будет не создание технологии рафинирования генома, а ее принятие обществом, которое, конечно же, сочтет ее нарушением морали, этики или еще чего-нибудь. Почему? – да как бы чего не вышло. Сейчас изменение генома человека запрещено, например, Конвенцией о биомедицине и правах человека 2005 года (статья 13, текст довольно безграмотный). Показательна эволюция отношения к евгенике , учению об улучшении наследственных свойств человека (т.е. к теме данной статьи). Оно было в целом благоприятным, от древних греков и до середины 20 века. Но затем евгеника приглянулась нацистам, и теперь ее часто ассоциируют с их бесчеловечными идеями. Однако эпизод с нацистами это, скорее, лишь повод для неприятия евгеники. А причина в подсознательном страхе перед прогрессом, основанном на невежестве и предположении, что любое изобретение будет, прежде всего, использовано во вред. Границы страха и невежества иллюстрирует история с ГМО : большинство населения убеждено, что даже овощи нельзя модифицировать. Хотел бы ошибиться, но надежды мало, что человечество станет существенно умнее через 50 лет.

Но идея все равно пробьет себе дорогу. Генетически улучшенные люди появятся, несмотря на запрет, и все увидят, что они хороши. Им будут завидовать, хотя и подсознательно бояться их. Но зависть возьмет верх, и все большее число людей захотят иметь таких детей. Затем найдутся страны, которые разрешат улучшение генома. Дольше всех будут держаться фундаментально-религиозные общества. В результате, они сильно отстанут в своем развитии. И слава Богу, должна же быть какая-то плата за ретроградство.

Тема генетического рафинирования неоднократно встречалась в фантастике (как правило, в негативном ключе). Например, в фильме Гаттака (1997). А вот обоснованных прогнозов мне встречать не случалось. Между тем, приводимый мною сценарий просматривается достаточно уверенно, и будет удивительно, если он не сбудется. Просто потому, что у человечества нет другого пути.

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

2 слайд

Описание слайда:

Взаимодействие генов Взаимодействие аллельных генов Взаимодействие неаллельных генов Полное доминирование Неполное доминирование Полимерия Комплементарность Кодоминирование Кооперация Эпистаз Плейотропное действие генов Летальное действие генов Модифицирующее действие генов

3 слайд

Описание слайда:

При полном доминировании доминантный аллель полностью подавляет действие рецессивного аллеля. Расщепление по фенотипу в F2 3:1 Взаимодействие аллельных генов Полное доминирование

4 слайд

Описание слайда:

Отсутствие малых коренных зубов у человека наследуется как доминантный аутосомный признак. Определите генотипы и фенотипы родителей и потомства, если один из супругов имеет малые коренные зубы, а другой гетерозиготен по этому гену. Какова вероятность рождения детей с этим признаком? Взаимодействие аллельных генов Полное доминирование Задача

5 слайд

Описание слайда:

Оба аллеля – и доминантый, и рецессивный – проявляют своё действие, т.е. доминантный аллель не полностью подавляет действие рецессивного аллеля (промежуточный эффект действия) Расщепление по фенотипу в F2 1:2:1 Взаимодействие аллельных генов Неполное доминирование

6 слайд

Описание слайда:

Взаимодействие аллельных генов Неполное доминирование Задача Определить все генотипы

7 слайд

Описание слайда:

Кодоминирование – совместное участие обеих аллелей в определении признака у гетерозиготной особи При кодоминировании (гетерозиготный организм содержит два разных доминантных аллеля, например А1 и А2 или JA и JB), каждый из доминантных аллелей проявляет свое действие, т.е. участвует в проявлении признака. Расщепление по фенотипу в F2 1:2:1 Взаимодействие аллельных генов Кодоминирование

8 слайд

Описание слайда:

Взаимодействие аллельных генов Кодоминирование Задача Определить возможные группы потомства, если у родителей 2 и 3 группы. Р G F1 JA J0 JB J0 2 группа 3 группа х JA J0 2 группа JA JB 4 группа JB J0 3 группа J0 J0 1 группа Примером кодоминирования служит IV группа крови человека в системе АВО: генотип –JA, JB, фенотип – АВ, т.е. у людей с IV группой крови в эритроцитах синтезируется и антиген А (по программе гена JA), и антиген В (по программе гена JB).

9 слайд

Описание слайда:

Комплементарность Взаимодействие неаллельных генов Явление, когда признак развивается только при взаимном действии двух доминантных неаллельных генов, каждый из которых в отдельности не вызывает развитие признака 1 ген влияет на другой, но не полностью доминирует Расщепление по фенотипу 9:7

10 слайд

Описание слайда:

Комплементарность Взаимодействие неаллельных генов Пурпурная окраска цветков душистого горошка определяется одновременным наличием в генотипе доминантных аллелей двух генов А и В, расположенных в разных хромосомах. Поодиночке они не могут обеспечить синтез пигмента красного цвета (антоциана) Если хотя бы один из этих двух генов представлен лишь рецессивными аллелями, цветки бывают белыми. Задача От скрещивания двух чистых линий душистого горошка с белыми цветками получены гибриды с пурпурной окраской цветков. Какое потомство дадут эти гибриды при самоопылении?

11 слайд

Описание слайда:

Комплементарность Взаимодействие неаллельных генов Пурпурная окраска цветков душистого горошка определяется одновременным наличием в генотипе доминантных аллелей двух генов А и В, расположенных в разных хромосомах. Поодиночке они не могут обеспечить синтез пигмента красного цвета (антоциана) Если хотя бы один из этих двух генов представлен лишь рецессивными аллелями, цветки бывают белыми. Задача АВ Ав аВ ав АВ Ав аВ ав ААВВ ААВв АаВВ АаВв ААВв ААвв АаВв Аавв ААВВ ААВв ааВВ ааВв АаВв ААвв ааВв аавв Пурпурные цветки – 9 Белые цветки - 7

12 слайд

Описание слайда:

Подавление проявления генов одной аллельной пары генами другой. Гены, подавляющие действие других неаллельных генов, называются супрессорами (подавителями). Эпистаз Взаимодействие неаллельных генов Наследование окраски у плодов тыквы: А - белая, а – полосатая В – желтая, в – зеленая Р: F1: ААВВ – белая, аавв – зеленая АаВв - белая

13 слайд

Описание слайда:

Эпистаз Доминантный Рецессивный Расщепление по фенотипу в F2 13:3 Расщепление по фенотипу в F2 9:3:4 Наследование окраски оперения кур Наследование окраски шерсти домовых мышей

14 слайд

Описание слайда:

15 слайд

Описание слайда:

Явление, когда несколько неаллельных доминантных генов отвечают за сходное воздействие на развитие одного и того же признака. Чем больше таких генов, тем ярче проявляется признак (цвет кожи, удойность коров) Взаимодействие неаллельных генов Полимерия Цвет кожи человека определяется генами А1 и А2. Он зависит от числа доминантных генов: А1А1А2А2 – очень темная кожа А1А1А2а2 А1А1а2а2 А1а1а2а2 а1а1а2а2 – светлая кожа

16 слайд

Описание слайда:

Если негритянка (A1A1A2A2) и белый мужчина (a1 a1 a2 a2) имеют детей, то в какой пропорции можно ожидать появление детей – полных негров, мулатов и белых? Обозначение генов: А1, А2 гены определяющие наличие пигмента а1, а2 гены определяющие отсутствие пигмента Взаимодействие неаллельных генов Полимерия Задача

17 слайд

Описание слайда:

Взаимодействие неаллельных генов Кооперация Явление, когда при взаимном действии двух доминантных неаллельных генов, каждый из которых имеет свое собственное фенотипическое проявление, происходит формирование нового признака Расщепление по фенотипу 15:1

18 слайд

Описание слайда:

Плейотропное действие генов Плеотропия – это влияние одного гена на проявление ряда признаков Например, ген С табака влияет на: Длину черешков листьев Заострения кончиков листьев Наличие острых зубцов на чашечках Продолговатую форму плода И т.д. (всего 6 признаков)

19 слайд

Описание слайда:

Летальное действие генов Рецессивные летальные гены могут вызвать гибель организма еще до полного завершения его развития Например, при генотипах аа формируются следующие признаки: Отсутствие хлорофилла в листьях растений кукурузы Образование внутренних спаек в легких у человека

20 слайд

Описание слайда:

Модифицирующее действие генов От взаимодействия этих генов зависит усиление или ослабление действия других генов Например, степень пятнистости шерсти у собак

Описание слайда:

Допустим, для фермы приобрели двух быков, у которых ген жирности молока точно не известен. Как следует поступить, пользуясь методом гибридизации, чтобы решить, какого из быков эффективнее использовать в качестве производителя? Задача 1 Одна из пород кур отличается укороченными ногами (такие куры не разрывают огородов). Этот признак – доминирующий. Управляющий ими ген вызывает одновременно и укорочение клюва. При этом у полиглотных цыплят клюв так мал, что они не в состоянии пробить яичную скорлупу и гибнут, не вылупившись из яйца. В инкубаторе хозяйства, разводящего только коротконогих кур, получено 3000 цыплят. Сколько среди них коротконогих? От скрещивания серого и белого гомозиготных кроликов родились только серые кролики. Во втором поколении появились черные кролики. Проанализируйте результаты скрещивания и объясните причину появления черных кроликов. С какой особью нужно скрестить гетерозиготную особь свиньи, чтобы в потомстве рецессивный ген скороспелости перевести в гомозиготное состояние? Задача 2 Задача 3 Задача 4

23 слайд

Описание слайда:

Среди лабораторных мышей Эдинбургского университета в результате мутации появились особи с волнистым волосяным покровом. Такие же по фенотипу мыши и тоже как следствие мутации появились потом в лаборатории Гарвардского университета. Исследования показали, что в обеих лабораториях мутантный признак неизменно наследуется как рецессивный. Но когда эдинбургских мутантов скрестили с гарвардскими, все потомство неожиданно оказалось совершенно нормальным, т.е. мутантные гены себя почему-то не проявили. Предложите какую-нибудь вероятную гипотезу, объясняющую такой удивительный факт. Какие надо провести дополнительные опыты, чтобы эту гипотезу проверить или уточнить? Задача 5 Мутации могли породить неодинаковые генотипы, если ими были затронуты различные гены. Но такое возможно, если волнистость волосяного покрова мыши определяется не одним, а хотя бы двумя взаимодействующими генами. Это аналогично изменению окраски цветков душистого горошка: предположим, что нормальные мыши имеют генотип ААВВ, а мутантные в разных городах – генотипы ааВВ и ААВВ. Тогда скрещивание обоих мутантов дает генотип АаВВ, который фенотипически не отличим от генотипа нормальных мышей ААВВ. В соответствии с гипотезой появление мутантов происходило так. В Эдинбурге под влиянием радиации (или иного фактора) в одной из гамет какой-то мыши доминантный ген А превратился в рецессивный ген а. Его появление оставалось незаметным, пока он в результате скрещиваний не распространился в популяции настолько, что однажды оказался у какого-то мышонка в гомозиготном состоянии.Так возникла первая особь с генотипом ааВВ и волнистым покровом. Нечто сходное произошло в Гарварде, только там мутировал не ген А, а ген В и в конце концов возник генотип ААВВ. Для проверки гипотезы стоит скрестить гибриды эдинбургских и гарвардских мутантов (с предполагаемым генотипом АаВв) между собой, ожидая расщепления 9:7, если гены не сцеплены, т.е. находятся не в одной хромосоме. Ответ

Генетика стремительно развивается. Ученые говорят, что перед ними открываются возможности, которые раньше воспринимались не иначе, как фантастические и абсолютно не реальные. Еще сравнительно недавно снимались фильмы о том, как в обществе будущего люди отправляются в специальные центры, чтобы выбирать внешность будущего ребенка. Сегодня исследователи говорят, что это возможно.

Василий Панкратов, научный сотрудник лаборатории нехромосомной наследственности Института генетики и цитологии НАН Беларуси. Фото Настасьи Ровдо.

Василий Панкратов работает научным сотрудником лаборатории нехромосомной наследственности Института генетики и цитологии НАН Беларуси. Совместно с коллегами он занимается популяционной генетикой человека, изучает с этой точки зрения группы людей. Население Минска, Минской области, Беларуси, Восточной Европы, Евразии или всего мира - это все популяции.

«Во-первых, нас интересует, насколько генетически различные популяции схожи или не схожи. К примеру, с кем генетически схожи белорусы: с русскими, поляками или еще с кем-то. Во-вторых, мы хотим понять, как генофонд, совокупность генетического материала, меняется во времени. Какие факторы на это влияют, какие закономерности здесь есть, - объясняет Василий Панкратов. - Таким образом мы сможем в какой-то степени изучать историю. К примеру, как образовалась та или иная этническая группа, как изменялась численность людей в популяции, какие специфические заболевания были ей свойственны».

С кем белорусы схожи генетически

Белорусы похожи на своих соседей, говорит ученый. Однако генофонд в Восточной Европе до такой степени перемешан, что сказать, с какими из соседей у нас схожесть наиболее выраженная, чрезвычайно сложно.

«Если мне дадут образец ДНК жителя Восточной Европы, то максимум, что можно сказать, - это что он с вероятностью 60% является белорусом и с вероятностью 40% - русским. А в большинстве случаев будет по 25 процентов, что он поляк, белорус, украинец или русский.

Может быть, точно определять этническое происхождение по ДНК станет возможным в будущем, когда мы будем располагать гораздо большей выборкой образцов, для которых проанализирована вся ДНК, а не только отдельные ее фрагменты, и мы сможем заметить даже мелкие различия».


Фото pi.tedcdn.com

Ранее в Институт генетики и цитологии мог обратиться любой желающий для того, чтобы узнать, кем были его предки. Однако к настоящему времени эту услугу перестали оказывать.

«Дело в том, что большинству жителей Беларуси после такого анализа скажут: «Вы типичный житель Беларуси». Или еще шире: «Вы типичный житель Восточной Европы, и ваши предки, скорее всего, несколько тысячелетий жили на этой территории». И для большинства это будет не то, чего они ждали, - говорит Василий Панкратов. - Как по мне, генетический анализ на определение происхождения имеет смысл тогда, когда есть, к примеру, семейная легенда.

Однажды к нам пришел человек, который исследовал архивы, изучал семейную историю, и хотел проверить гипотезу о том, что одна из его прабабушек была марийкой и происходила с Урала. Мы сделали анализ, и результаты соответствовали этой гипотезе. Его вариант «женской» ДНК, которая передается по прямой женской линии, более характерен для Сибири, чем для Беларуси. Это еще не доказательство, но это факт, который подкрепляет его гипотезу».


Фото pi.tedcdn.com

Еще год тому назад Василий Панкратов, работая над диссертацией, исследовал генофонд белорусских татар. Выяснилось, что у белорусских татар треть составляют варианты ДНК, которые встречаются в настоящее время в Сибири, Монголии, на Алтае, в Средней Азии. Несмотря на то, что татары длительное время проживают на территории Беларуси, они до сих пор сохранили генетический след своих предков. Более того, их «материнская» ДНК, то есть передающаяся от матери, имеет около 30 процентов общего с азиатскими популяциями.

«Это значит, что мужчины-воины татары, которые пришли на наши земли, не только брали белорусок в жены. Некоторые из них пришли со своими семьями. Более сложные анализы показали, что сначала происходило смешение между мигрантами азиатского происхождения с местным населением, а спустя какое-то время образовался определенный барьер - и они перестали смешиваться. Иначе говоря, с течением времени они, скорее всего, стали бы очень похожими на белорусов. И это соответствует тому, что мы знаем: Витовт сначала дал добро на браки между татарами и местными женщинами, а через какое-то время был введен запрет на межконфессиональные браки. Поскольку татары были мусульманами, то, соответственно, не могли сочетаться браком с местным населением. Именно ввиду этого барьера они и сохранили свою генетическую идентичность», - объясняет генетик.


Фото si.wsj.net

В настоящее время Василий Панкратов занимается новым проектом, который связан не с отбором материала, а с анализом накопленного, причем не только нашей страной, но и другими. Здесь фокус исследователей шире, они намерены выяснить, насколько генетическое прошлое жителей Восточной Европы отличается от Западной.

Ученые пытаются работать и с древней ДНК, которую можно выделять из останков - тех же костей или зубов.

«Наша страна климатически не очень благоприятна, поскольку останки лучше сохраняются либо на севере, в вечной мерзлоте, либо в пещерах с соответствующим микроклиматом. Тем не менее, положительные результаты имеются, - уверяет Василий Панкратов. - У нас есть археологические материалы, из которых удалось взять ДНК. Мы сможем выяснить конкретнее, как менялся генофонд во времени не через какие-то математические анализы и статистики, а сравнив то, что имеем сейчас, с тем, что было несколько столетий или тысячелетий назад».

Как меняется ДНК

Весь мир вокруг нас состоит из химических веществ. Они разные, поэтому и состоящие из них предметы, материалы разные. ДНК - тоже химическое вещество, причем с очень длинными молекулами. Часто говорят «цепочка ДНК», так как эти длинные молекулы состоят из маленьких «кирпичиков». Одна хромосома человека может быть длиной около 2 сантиметров, что для молекулы очень много. Эта одна хромосома может включать десятки миллионов «кирпичиков». А одна клетка человеческого организма содержит ДНК длиной около двух метров, при этом количество блоков-«кирпичиков» будет достигать 6 миллиардов.

ДНК отвечает за то, какие мы есть. Не на сто процентов, но в большой степени, отмечает генетик. Она определяет цвет глаз, волос, кожи, особенности здоровья, влияет на психические черты и даже склонности к той или иной деятельности. Например, математические или лингвистические способности в определенной степени зависят от ДНК.

«Когда мы говорим об изменении ДНК, используем слово «мутация». Большинство мутаций, которые происходят у людей, никак не влияет на здоровье или внешность. Кстати, их-то мы и используем для наших исследований, поскольку на них не влияет среда, в которой живут люди. Конечно, мутации бывают вредными, они происходят в тех частях ДНК, которые все-таки за что-то отвечают. И еще реже происходят полезные мутации», - говорит Василий Панкратов.

Фото cargocollective.com

Три полезные мутации

Несколько тысяч лет тому назад в Европе люди стали разводить коров и пить молоко, рассказывает генетик. Мы хорошо знаем, что обычно млекопитающие пьют молоко в детском возрасте, а потом утрачивают эту способность. Вопрос: как люди научились пить молоко? Когда возникла мутация, которая привела к тому, что способность усваивать молоко не пропала с возрастом? Ведь дальше, в результате естественного отбора, те, кто имел эту способность, с большей вероятностью выживали в сложных условиях, когда попросту нечего было есть.

«Мы знаем, что среди современных людей не все могут пить молоко, - говорит ученый. - Большинство европейцев может, а большинство азиатов - нет, поскольку у них из-за этого возникают проблемы с желудком. Можно сказать, что люди, которые сегодня не могут пить молоко, менее эволюционно продвинутые. В Азии же не было того животноводства, при котором бы получали молоко с целью потреблять его в пищу, поэтому, это свойство не являлось полезным. Там же, где начали разводить коров и потреблять молоко, способность усваивать молоко стала полезной и распространилась на всю популяцию».

Исследователь приводит и другой пример. Есть люди, генетически устойчивые к СПИДу. Это значит, что произошла мутация, благодаря которой вирус не может размножаться в клетках таких людей. Их в европейской популяции около одного процента.

«С точки зрения классической эволюционной теории мы понимаем почему. Не так уж много людей погибает от СПИДа. Если бы началась тотальная эпидемия, тогда бы эта мутация оказалась очень полезной. Люди, выжившие благодаря ей, передавали бы ее последующим поколениям. Все-таки ситуация со СПИДом в Европе не настолько острая, поэтому доля этой мутации невысока», - говорит ученый.

Или еще один пример.

«Если кто-то бывал в горах на большой высоте, тот знает, что большинству людей, особенно тем, кто привык жить внизу, находиться там сложно. Не хватает кислорода, трудно дышать, болит голова, тошнит. А вот, к примеру, тибетцы живут в горах долгое время, и выяснилось, что они приспособлены к этим условиям генетически, - объясняет Василий Панкратов. - У них есть мутации, которые позволяют им жить и комфортно себя чувствовать на большой высоте. Если белорусы поедут жить в Тибет, то, хотя они и приспособятся к низкой концентрации кислорода, но за счет большого количества эритроцитов в крови это повлечет негативные последствия. Ведь если красных клеток слишком много, возникает высокий риск того, что они застрянут в сосудах и спровоцируют инсульт или инфаркт».

Генетик отмечает, что мутации происходят все время. Каждый из нас отличается от родителей примерно на 60 букв. Правда, эти 60 букв - из шести миллиардов.


Генетика будущего

Исследователь говорит, что уже сейчас белорусские генетики, проанализировав только отдельные части ДНК, могут определить, какие лекарства могут навредить человеку. С учетом этого можно планировать лечение, причем не только подбирать правильные лекарства, но и определять правильную дозу.

Уже сейчас белорусские генетики могут сказать, является ли человек носителем тех или иных генетических заболеваний.

«Половину генетического материала мы получаем от матери и половину - от отца. То есть каждый ген, за что бы он ни отвечал, представлены двумя копиями - от матери и от отца. Некоторые люди получают одну нормальную копию, а другую - с вредной мутацией. Сами они здоровы, но являются носителями. И если два таких человека заведут ребенка, то он может родиться больным, - рассказывает Василий Панкратов. - Чаще всего к нам обращаются люди, у которых в семье бывали случаи генетического заболевания. Они хотят узнать, каков риск того, что ребенок родится больным».

Генетик отмечает, что сегодня можно проводить диагностику здоровья ребенка еще до его рождения, проверить, нет ли у него генетических заболеваний, еще когда женщина беременна. Делали это и раньше, но более сложными, неприятными и болезненными методами. Теперь же у беременной женщины берут кровь из вены, отделяют ДНК матери от ДНК ребенка и проводят анализ.

«Далее мы подходим к черте, когда наши возможности сталкиваются с вопросами этики. Например, мы выяснили, что и муж, и жена, являются носителями какого-то заболевания. Они понимают, что с вероятностью 25 процентов в них родится больной ребенок. Тем не менее они хотят ребенка, и хотят, чтобы он был здоровым. Теперь, с помощью достижений генетики и экстракорпорального оплодотворения, мы можем получить несколько эмбрионов, каждый из них проверить на наличие этого заболевания, выбрать здоровый эмбрион и подсадить его в матку. В результате женщина родит здорового ребенка», - рассказывает ученый.

А дальше начинается научная фантастика, которая, как уверяет исследователь, становится действительностью. Он приводит в пример фильм «Гатака», снятый в 1997 году, в котором рассказывается об обществе будущего, где еще до беременности родители идут в центр и заказывают ребенка, мол, «хочу высокого блондина с голубыми глазами» и далее в том же духе.

«Мы пока еще не знаем, каковы генетические основы всех признаков человека, но мы знаем много.

Технологии уже позволяют взять зиготу, одну клетку, из которой в дальнейшем образуется эмбрион, а потом и человек, и генетически изменить ее почти что как угодно, - утверждает Василий Панкратов. - Конечно, не получится создать супермена со стальной кожей, но в пределах тех признаков, которые встречаются у людей, можно сделать какие угодно изменения. Можем выбрать цвет глаз, волос, повлиять на рост человека, его склонности.

И прежде всего, можем избавить от заболеваний, которые либо полностью являются генетическими, либо имеют генетический компонент. При условии, что мы знаем, какой именно ген и в каком направлении мы хотим изменить, технически это вполне возможно. Ограничения преимущественно этические. И я думаю, мое поколение столкнется с тем, что придется решать, хотим ли мы этого».